$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
In OKD 4.10, you can install a cluster on Google Cloud Platform (GCP) in a restricted network by creating an internal mirror of the installation release content on an existing Google Virtual Private Cloud (VPC).
You can install an OKD cluster by using mirrored installation release content, but your cluster will require internet access to use the GCP APIs. |
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured a GCP project to host the cluster.
You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources
data for your version of OKD.
Because the installation media is on the mirror host, you can use that computer to complete all installation steps. |
You have an existing VPC in GCP. While installing a cluster in a restricted network that uses installer-provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-provisioned VPC that satisfies one of the following requirements:
Contains the mirror registry
Has firewall rules or a peering connection to access the mirror registry hosted elsewhere
If you use a firewall, you configured it to allow the sites that your cluster requires access to. While you might need to grant access to more sites, you must grant access to *.googleapis.com
and accounts.google.com
.
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the kube-system
namespace, you can manually create and maintain IAM credentials.
In OKD 4.10, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware or on VMware vSphere.
To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.
Clusters in restricted networks have the following additional limitations and restrictions:
The ClusterVersion
status includes an Unable to retrieve available updates
error.
By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_ed25519 , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
If you plan to install an OKD cluster that uses FIPS validated or Modules In Process cryptographic libraries on the |
View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the ~/.ssh/id_ed25519.pub
public key:
$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather
command.
On some distributions, default SSH private key identities such as |
If the ssh-agent
process is not already running for your local user, start it as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA. |
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519 |
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Set the GOOGLE_APPLICATION_CREDENTIALS
environment variable to the full path to your service account private key file.
$ export GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file>"
Verify that the credentials were applied.
$ gcloud auth list
When you install OKD, provide the SSH public key to the installation program.
You can customize the OKD cluster you install on Google Cloud Platform (GCP).
Obtain the OKD installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
Have the imageContentSources
values that were generated during mirror registry creation.
Obtain the contents of the certificate for your mirror registry.
Obtain service principal permissions at the subscription level.
Create the install-config.yaml
file.
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
Select gcp as the platform to target.
If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
Select the region to deploy the cluster to.
Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
Enter a descriptive name for your cluster.
Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.
Edit the install-config.yaml
file to give the additional information that
is required for an installation in a restricted network.
Update the pullSecret
value to contain the authentication information for
your registry:
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'
For <mirror_host_name>
, specify the registry domain name
that you specified in the certificate for your mirror registry, and for
<credentials>
, specify the base64-encoded user name and password for
your mirror registry.
Add the additionalTrustBundle
parameter and value.
additionalTrustBundle: |
-----BEGIN certificate-----
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
-----END certificate-----
The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority, or the self-signed certificate that you generated for the mirror registry.
Define the network and subnets for the VPC to install the cluster in under the parent platform.gcp
field:
network: <existing_vpc>
controlPlaneSubnet: <control_plane_subnet>
computeSubnet: <compute_subnet>
For platform.gcp.network
, specify the name for the existing Google VPC. For platform.gcp.controlPlaneSubnet
and platform.gcp.computeSubnet
, specify the existing subnets to deploy the control plane machines and compute machines, respectively.
Add the image content resources, which resemble the following YAML excerpt:
imageContentSources:
- mirrors:
- <mirror_host_name>:5000/<repo_name>/release
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- <mirror_host_name>:5000/<repo_name>/release
source: registry.redhat.io/ocp/release
For these values, use the imageContentSources
that you recorded during mirror registry creation.
Make any other modifications to the install-config.yaml
file that you require. You can find more information about
the available parameters in the Installation configuration parameters section.
Back up the install-config.yaml
file so that you can use
it to install multiple clusters.
The |
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the |
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the |
String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource |
Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: |
Object |
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values | ||
---|---|---|---|---|
|
The configuration for the cluster network. |
Object
|
||
|
The cluster network provider Container Network Interface (CNI) plugin to install. |
Either |
||
|
The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation.
The prefix length for an IPv4 block is between |
||
|
The subnet prefix length to assign to each individual node. For example, if |
A subnet prefix. The default value is |
||
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. |
An array with an IP address block in CIDR format. For example:
|
||
|
The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use |
An IP network block in CIDR notation. For example,
|
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||||
---|---|---|---|---|---|---|
|
A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. |
String |
||||
|
Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OKD process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OKD cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time. |
|
||||
|
The configuration for the machines that comprise the compute nodes. |
Array of |
||||
|
Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are |
String |
||||
|
Whether to enable or disable simultaneous multithreading, or
|
|
||||
|
Required if you use |
|
||||
|
Required if you use |
|
||||
|
The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
||||
|
The configuration for the machines that comprise the control plane. |
Array of |
||||
|
Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are |
String |
||||
|
Whether to enable or disable simultaneous multithreading, or
|
|
||||
|
Required if you use |
|
||||
|
Required if you use |
|
||||
|
The number of control plane machines to provision. |
The only supported value is |
||||
|
The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
If you are installing on GCP into a shared virtual private cloud (VPC),
|
|
||||
|
Sources and repositories for the release-image content. |
Array of objects. Includes a |
||||
|
Required if you use |
String |
||||
|
Specify one or more repositories that may also contain the same images. |
Array of strings |
||||
|
How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
||||
|
The SSH key or keys to authenticate access your cluster machines.
|
One or more keys. For example:
|
Additional GCP configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
|
The name of the existing VPC that you want to deploy your cluster to. |
String. |
||
|
The name of the GCP region that hosts your cluster. |
Any valid region name, such as |
||
|
The GCP machine type. |
The GCP machine type. |
||
|
The availability zones where the installation program creates machines for the specified MachinePool. |
A list of valid GCP availability zones, such as |
||
|
The name of the existing subnet in your VPC that you want to deploy your control plane machines to. |
The subnet name. |
||
|
The name of the existing subnet in your VPC that you want to deploy your compute machines to. |
The subnet name. |
||
|
A list of license URLs that must be applied to the compute images.
|
Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installer to copy the source image before use. |
||
|
The size of the disk in gigabytes (GB). |
Any size between 16 GB and 65536 GB. |
||
|
The type of disk. |
Either the default |
||
|
The name of the customer managed encryption key to be used for control plane machine disk encryption. |
The encryption key name. |
||
|
For control plane machines, the name of the KMS key ring to which the KMS key belongs. |
The KMS key ring name. |
||
|
For control plane machines, the GCP location in which the key ring exists. For more information on KMS locations, see Google’s documentation on Cloud KMS locations. |
The GCP location for the key ring. |
||
|
For control plane machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set. |
The GCP project ID. |
||
|
The name of the customer managed encryption key to be used for compute machine disk encryption. |
The encryption key name. |
||
|
For compute machines, the name of the KMS key ring to which the KMS key belongs. |
The KMS key ring name. |
||
|
For compute machines, the GCP location in which the key ring exists. For more information on KMS locations, see Google’s documentation on Cloud KMS locations. |
The GCP location for the key ring. |
||
|
For compute machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set. |
The GCP project ID. |
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap |
FCOS |
4 |
16 GB |
100 GB |
300 |
Control plane |
FCOS |
4 |
16 GB |
100 GB |
300 |
Compute |
FCOS |
2 |
8 GB |
100 GB |
300 |
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.
The following Google Cloud Platform instance types have been tested with OKD.
A2
A3
C2
C2D
C3
C3D
C4
E2
M1
N1
N2
N2D
N4
Tau T2D
Using a custom machine type to install a OKD cluster is supported.
Consider the following when using a custom machine type:
Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
The name of the custom machine type must adhere to the following syntax:
custom-<number_of_cpus>-<amount_of_memory_in_mb>
For example, custom-6-20480
.
As part of the installation process, you specify the custom machine type in the install-config.yaml
file.
install-config.yaml
file with a custom machine typecompute:
- architecture: amd64
hyperthreading: Enabled
name: worker
platform:
gcp:
type: custom-6-20480
replicas: 2
controlPlane:
architecture: amd64
hyperthreading: Enabled
name: master
platform:
gcp:
type: custom-6-20480
replicas: 3
You can customize the install-config.yaml
file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your |
apiVersion: v1
baseDomain: example.com (1)
controlPlane: (2) (3)
hyperthreading: Enabled (4)
name: master
platform:
gcp:
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
osDisk:
diskType: pd-ssd
diskSizeGB: 1024
encryptionKey: (5)
kmsKey:
name: worker-key
keyRing: test-machine-keys
location: global
projectID: project-id
replicas: 3
compute: (2) (3)
- hyperthreading: Enabled (4)
name: worker
platform:
gcp:
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
osDisk:
diskType: pd-standard
diskSizeGB: 128
encryptionKey: (5)
kmsKey:
name: worker-key
keyRing: test-machine-keys
location: global
projectID: project-id
replicas: 3
metadata:
name: test-cluster (1)
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes
serviceNetwork:
- 172.30.0.0/16
platform:
gcp:
projectID: openshift-production (1)
region: us-central1 (1)
network: existing_vpc (6)
controlPlaneSubnet: control_plane_subnet (7)
computeSubnet: compute_subnet (8)
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (9)
sshKey: ssh-ed25519 AAAA... (10)
additionalTrustBundle: | (11)
-----BEGIN certificate-----
<MY_TRUSTED_CA_CERT>
-----END certificate-----
imageContentSources: (12)
- mirrors:
- <local_registry>/<local_repository_name>/release
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- <local_registry>/<local_repository_name>/release
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
1 | Required. The installation program prompts you for this value. | ||
2 | If you do not provide these parameters and values, the installation program provides the default value. | ||
3 | The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, - , and the first line of the controlPlane section must not. Only one control plane pool is used. |
||
4 | Whether to enable or disable simultaneous multithreading, or hyperthreading . By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled . If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
|
||
5 | Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information on granting the correct permissions for your service account, see "Machine management" → "Creating machine sets" → "Creating a machine set on GCP". |
||
6 | Specify the name of an existing VPC. | ||
7 | Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified. | ||
8 | Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified. | ||
9 | For <local_registry> , specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000 . For <credentials> , specify the base64-encoded user name and password for your mirror registry. |
||
10 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
|
||
11 | Provide the contents of the certificate file that you used for your mirror registry. | ||
12 | Provide the imageContentSources section from the output of the command to mirror the repository. |
You can create an Ingress Controller that has global access to a Google Cloud Platform (GCP) cluster. Global access is only available to Ingress Controllers using internal load balancers.
You created the install-config.yaml
and complete any modifications to it.
Create an Ingress Controller with global access on a new GCP cluster.
Change to the directory that contains the installation program and create a manifest file:
$ ./openshift-install create manifests --dir <installation_directory> (1)
1 | For <installation_directory> , specify the name of the directory that
contains the install-config.yaml file for your cluster. |
Create a file that is named cluster-ingress-default-ingresscontroller.yaml
in the <installation_directory>/manifests/
directory:
$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml (1)
1 | For <installation_directory> , specify the directory name that contains the
manifests/ directory for your cluster. |
After creating the file, several network configuration files are in the
manifests/
directory, as shown:
$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml
cluster-ingress-default-ingresscontroller.yaml
Open the cluster-ingress-default-ingresscontroller.yaml
file in an editor and enter a custom resource (CR) that describes the Operator configuration you want:
clientAccess
configuration to Global
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
endpointPublishingStrategy:
loadBalancer:
providerParameters:
gcp:
clientAccess: Global (1)
type: GCP
scope: Internal (2)
type: LoadBalancerService
1 | Set gcp.clientAccess to Global . |
2 | Global access is only available to Ingress Controllers using internal load balancers. |
Production environments can deny direct access to the internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OKD
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
You have an existing install-config.yaml
file.
You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN certificate-----
<MY_TRUSTED_CA_CERT>
-----END certificate-----
...
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. |
3 | A comma-separated list of destination domain names, IP addresses, or
other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com , but not y.com . Use * to bypass the proxy for all destinations. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace that contains one or more additional CA
certificates that are required for proxying HTTPS connections. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges these contents
with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the FCOS trust
bundle. |
The installation program does not support the proxy |
If the installer times out, restart and then complete the deployment by using the
|
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
You can install OKD on a compatible cloud platform.
You can run the |
Configure an account with the cloud platform that hosts your cluster.
Obtain the OKD installation program and the pull secret for your cluster.
Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
The GOOGLE_CREDENTIALS
, GOOGLE_CLOUD_KEYFILE_JSON
, or GCLOUD_KEYFILE_JSON
environment variables
The ~/.gcp/osServiceAccount.json
file
The gcloud cli
default credentials
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed. |
When the cluster deployment completes, directions for accessing your cluster,
including a link to its web console and credentials for the kubeadmin
user,
display in your terminal.
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s
The cluster access and credential information also outputs to |
|
You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
If you assigned the Owner
role to your service account, you can remove that role and replace it with the Viewer
role.
If you included the Service Account Key Admin
role,
you can remove it.
You can install the OpenShift CLI (oc
) to interact with OKD from a
command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack the archive:
$ tar xvf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.zip
.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OKD installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
Disable the sources for the default catalogs by adding disableAllDefaultSources: true
to the OperatorHub
object:
$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create, delete, disable, and enable individual sources. |
See About remote health monitoring for more information about the Telemetry service
Configure image streams for the Cluster Samples Operator and the must-gather
tool.
Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
If necessary, you can opt out of remote health reporting.
If necessary, see Registering your disconnected cluster