ClusterNetwork describes the cluster network. There is normally only one object of this type, named "default", which is created by the SDN network plugin based on the master configuration when the cluster is brought up for the first time.
object
Endpoints is a collection of endpoints that implement the actual service. Example: Name: "mysvc", Subsets: [ { Addresses: [{"ip": "10.10.1.1"}, {"ip": "10.10.2.2"}], Ports: [{"name": "a", "port": 8675}, {"name": "b", "port": 309}] }, { Addresses: [{"ip": "10.10.3.3"}], Ports: [{"name": "a", "port": 93}, {"name": "b", "port": 76}] }, ]
object
EndpointSlice represents a subset of the endpoints that implement a service. For a given service there may be multiple EndpointSlice objects, selected by labels, which must be joined to produce the full set of endpoints.
object
egressNetworkPolicy describes the current egress network policy for a Namespace. When using the 'redhat/openshift-ovs-multitenant' network plugin, traffic from a pod to an IP address outside the cluster will be checked against each egressNetworkPolicyRule in the pod's namespace's egressNetworkPolicy, in order. If no rule matches (or no egressNetworkPolicy is present) then the traffic will be allowed by default.
object
HostSubnet describes the container subnet network on a node. The HostSubnet object must have the same name as the Node object it corresponds to.
object
Ingress is a collection of rules that allow inbound connections to reach the endpoints defined by a backend. An Ingress can be configured to give services externally-reachable urls, load balance traffic, terminate SSL, offer name based virtual hosting etc.
object
NetNamespace describes a single isolated network. When using the redhat/openshift-ovs-multitenant plugin, every Namespace will have a corresponding NetNamespace object with the same name. (When using redhat/openshift-ovs-subnet, NetNamespaces are not used.)
object
NetworkPolicy describes what network traffic is allowed for a set of Pods
object
A route allows developers to expose services through an HTTP(S) aware load balancing and proxy layer via a public DNS entry. The route may further specify TLS options and a certificate, or specify a public CNAME that the router should also accept for HTTP and HTTPS traffic. An administrator typically configures their router to be visible outside the cluster firewall, and may also add additional security, caching, or traffic controls on the service content. Routers usually talk directly to the service endpoints.
Once a route is created, the `host` field may not be changed. Generally, routers use the oldest route with a given host when resolving conflicts.
Routers are subject to additional customization and may support additional controls via the annotations field.
Because administrators may configure multiple routers, the route status field is used to return information to clients about the names and states of the route under each router. If a client chooses a duplicate name, for instance, the route status conditions are used to indicate the route cannot be chosen.
object