This is a cache of https://docs.okd.io/4.10/installing/installing_openstack/installing-openstack-user-kuryr.html. It is a snapshot of the page at 2024-11-10T21:37:15.247+0000.
Installing a cluster on OpenStack with Kuryr on your own infrastructure - Installing on OpenStack | Installing | OKD 4.10
×

In OKD version 4.10, you can install a cluster on OpenStack that runs on user-provisioned infrastructure.

Using your own infrastructure allows you to integrate your cluster with existing infrastructure and modifications. The process requires more labor on your part than installer-provisioned installations, because you must create all OpenStack resources, like Nova servers, Neutron ports, and security groups. However, Red Hat provides Ansible playbooks to help you in the deployment process.

Prerequisites

About Kuryr SDN

Kuryr is a container network interface (CNI) plugin solution that uses the Neutron and Octavia OpenStack services to provide networking for pods and Services.

Kuryr and OKD integration is primarily designed for OKD clusters running on OpenStack VMs. Kuryr improves the network performance by plugging OKD pods into OpenStack SDN. In addition, it provides interconnectivity between pods and OpenStack virtual instances.

Kuryr components are installed as pods in OKD using the openshift-kuryr namespace:

  • kuryr-controller - a single service instance installed on a master node. This is modeled in OKD as a Deployment object.

  • kuryr-cni - a container installing and configuring Kuryr as a CNI driver on each OKD node. This is modeled in OKD as a DaemonSet object.

The Kuryr controller watches the OKD API server for pod, service, and namespace create, update, and delete events. It maps the OKD API calls to corresponding objects in Neutron and Octavia. This means that every network solution that implements the Neutron trunk port functionality can be used to back OKD via Kuryr. This includes open source solutions such as Open vSwitch (OVS) and Open Virtual Network (OVN) as well as Neutron-compatible commercial SDNs.

Kuryr is recommended for OKD deployments on encapsulated OpenStack tenant networks to avoid double encapsulation, such as running an encapsulated OKD SDN over an OpenStack network.

If you use provider networks or tenant VLANs, you do not need to use Kuryr to avoid double encapsulation. The performance benefit is negligible. Depending on your configuration, though, using Kuryr to avoid having two overlays might still be beneficial.

Kuryr is not recommended in deployments where all of the following criteria are true:

  • The OpenStack version is less than 16.

  • The deployment uses UDP services, or a large number of TCP services on few hypervisors.

or

  • The ovn-octavia Octavia driver is disabled.

  • The deployment uses a large number of TCP services on few hypervisors.

Resource guidelines for installing OKD on OpenStack with Kuryr

When using Kuryr SDN, the pods, services, namespaces, and network policies are using resources from the OpenStack quota; this increases the minimum requirements. Kuryr also has some additional requirements on top of what a default install requires.

Use the following quota to satisfy a default cluster’s minimum requirements:

Table 1. Recommended resources for a default OKD cluster on OpenStack with Kuryr
Resource Value

Floating IP addresses

3 - plus the expected number of Services of LoadBalancer type

Ports

1500 - 1 needed per Pod

Routers

1

Subnets

250 - 1 needed per Namespace/Project

Networks

250 - 1 needed per Namespace/Project

RAM

112 GB

vCPUs

28

Volume storage

275 GB

Instances

7

Security groups

250 - 1 needed per Service and per NetworkPolicy

Security group rules

1000

Server groups

2 - plus 1 for each additional availability zone in each machine pool

Load balancers

100 - 1 needed per Service

Load balancer listeners

500 - 1 needed per Service-exposed port

Load balancer pools

500 - 1 needed per Service-exposed port

A cluster might function with fewer than recommended resources, but its performance is not guaranteed.

If OpenStack object storage (Swift) is available and operated by a user account with the swiftoperator role, it is used as the default backend for the OKD image registry. In this case, the volume storage requirement is 175 GB. Swift space requirements vary depending on the size of the image registry.

If you are using OpenStack version 16 with the Amphora driver rather than the OVN Octavia driver, security groups are associated with service accounts instead of user projects.

Take the following notes into consideration when setting resources:

  • The number of ports that are required is larger than the number of pods. Kuryr uses ports pools to have pre-created ports ready to be used by pods and speed up the pods' booting time.

  • Each network policy is mapped into an OpenStack security group, and depending on the NetworkPolicy spec, one or more rules are added to the security group.

  • Each service is mapped to an OpenStack load balancer. Consider this requirement when estimating the number of security groups required for the quota.

    If you are using OpenStack version 15 or earlier, or the ovn-octavia driver, each load balancer has a security group with the user project.

  • The quota does not account for load balancer resources (such as VM resources), but you must consider these resources when you decide the OpenStack deployment’s size. The default installation will have more than 50 load balancers; the clusters must be able to accommodate them.

    If you are using OpenStack version 16 with the OVN Octavia driver enabled, only one load balancer VM is generated; services are load balanced through OVN flows.

An OKD deployment comprises control plane machines, compute machines, and a bootstrap machine.

To enable Kuryr SDN, your environment must meet the following requirements:

  • Run OpenStack 13+.

  • Have Overcloud with Octavia.

  • Use Neutron Trunk ports extension.

  • Use openvswitch firewall driver if ML2/OVS Neutron driver is used instead of ovs-hybrid.

Increasing quota

When using Kuryr SDN, you must increase quotas to satisfy the OpenStack resources used by pods, services, namespaces, and network policies.

Procedure
  • Increase the quotas for a project by running the following command:

    $ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>

Configuring Neutron

Kuryr CNI leverages the Neutron Trunks extension to plug containers into the OpenStack SDN, so you must use the trunks extension for Kuryr to properly work.

In addition, if you leverage the default ML2/OVS Neutron driver, the firewall must be set to openvswitch instead of ovs_hybrid so that security groups are enforced on trunk subports and Kuryr can properly handle network policies.

Configuring Octavia

Kuryr SDN uses OpenStack’s Octavia LBaaS to implement OKD services. Thus, you must install and configure Octavia components in OpenStack to use Kuryr SDN.

To enable Octavia, you must include the Octavia service during the installation of the OpenStack Overcloud, or upgrade the Octavia service if the Overcloud already exists. The following steps for enabling Octavia apply to both a clean install of the Overcloud or an Overcloud update.

The following steps only capture the key pieces required during the deployment of OpenStack when dealing with Octavia. It is also important to note that registry methods vary.

This example uses the local registry method.

Procedure
  1. If you are using the local registry, create a template to upload the images to the registry. For example:

    (undercloud) $ openstack overcloud container image prepare \
    -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
    --namespace=registry.access.redhat.com/rhosp13 \
    --push-destination=<local-ip-from-undercloud.conf>:8787 \
    --prefix=openstack- \
    --tag-from-label {version}-{product-version} \
    --output-env-file=/home/stack/templates/overcloud_images.yaml \
    --output-images-file /home/stack/local_registry_images.yaml
  2. Verify that the local_registry_images.yaml file contains the Octavia images. For example:

    ...
    - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
      push_destination: <local-ip-from-undercloud.conf>:8787
    - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
      push_destination: <local-ip-from-undercloud.conf>:8787
    - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
      push_destination: <local-ip-from-undercloud.conf>:8787
    - imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
      push_destination: <local-ip-from-undercloud.conf>:8787

    The Octavia container versions vary depending upon the specific OpenStack release installed.

  3. Pull the container images from registry.redhat.io to the Undercloud node:

    (undercloud) $ sudo openstack overcloud container image upload \
      --config-file  /home/stack/local_registry_images.yaml \
      --verbose

    This may take some time depending on the speed of your network and Undercloud disk.

  4. Since an Octavia load balancer is used to access the OKD API, you must increase their listeners' default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passing the following file to the Overcloud deploy command:

    (undercloud) $ cat octavia_timeouts.yaml
    parameter_defaults:
      OctaviaTimeoutClientData: 1200000
      OctaviaTimeoutMemberData: 1200000

    This is not needed for OpenStack 13.0.13+.

  5. Install or update your Overcloud environment with Octavia:

    $ openstack overcloud deploy --templates \
      -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
      -e octavia_timeouts.yaml

    This command only includes the files associated with Octavia; it varies based on your specific installation of OpenStack. See the OpenStack documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director.

    When leveraging Kuryr SDN, the Overcloud installation requires the Neutron trunk extension. This is available by default on director deployments. Use the openvswitch firewall instead of the default ovs-hybrid when the Neutron backend is ML2/OVS. There is no need for modifications if the backend is ML2/OVN.

  6. In OpenStack versions earlier than 13.0.13, add the project ID to the octavia.conf configuration file after you create the project.

    • To enforce network policies across services, like when traffic goes through the Octavia load balancer, you must ensure Octavia creates the Amphora VM security groups on the user project.

      This change ensures that required load balancer security groups belong to that project, and that they can be updated to enforce services isolation.

      This task is unnecessary in OpenStack version 13.0.13 or later.

      Octavia implements a new ACL API that restricts access to the load balancers VIP.

      1. Get the project ID

        $ openstack project show <project>
        Example output
        +-------------+----------------------------------+
        | Field       | Value                            |
        +-------------+----------------------------------+
        | description |                                  |
        | domain_id   | default                          |
        | enabled     | True                             |
        | id          | PROJECT_ID                       |
        | is_domain   | False                            |
        | name        | *<project>*                      |
        | parent_id   | default                          |
        | tags        | []                               |
        +-------------+----------------------------------+
      2. Add the project ID to octavia.conf for the controllers.

        1. Source the stackrc file:

          $ source stackrc  # Undercloud credentials
        2. List the Overcloud controllers:

          $ openstack server list
          Example output
          +--------------------------------------+--------------+--------+-----------------------+----------------+------------+
          │
          | ID                                   | Name         | Status | Networks
          | Image          | Flavor     |
          │
          +--------------------------------------+--------------+--------+-----------------------+----------------+------------+
          │
          | 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
          ctlplane=192.168.24.8 | overcloud-full | controller |
          │
          | dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0    | ACTIVE |
          ctlplane=192.168.24.6 | overcloud-full | compute    |
          │
          +--------------------------------------+--------------+--------+-----------------------+----------------+------------+
        3. SSH into the controller(s).

          $ ssh heat-admin@192.168.24.8
        4. Edit the octavia.conf file to add the project into the list of projects where Amphora security groups are on the user’s account.

          # List of project IDs that are allowed to have Load balancer security groups
          # belonging to them.
          amp_secgroup_allowed_projects = PROJECT_ID
      3. Restart the Octavia worker so the new configuration loads.

        controller-0$ sudo docker restart octavia_worker

Depending on your OpenStack environment, Octavia might not support UDP listeners. If you use Kuryr SDN on OpenStack version 13.0.13 or earlier, UDP services are not supported. OpenStack version 16 or later support UDP.

The Octavia OVN Driver

Octavia supports multiple provider drivers through the Octavia API.

To see all available Octavia provider drivers, on a command line, enter:

$ openstack loadbalancer provider list
Example output
+---------+-------------------------------------------------+
| name    | description                                     |
+---------+-------------------------------------------------+
| amphora | The Octavia Amphora driver.                     |
| octavia | Deprecated alias of the Octavia Amphora driver. |
| ovn     | Octavia OVN driver.                             |
+---------+-------------------------------------------------+

Beginning with OpenStack version 16, the Octavia OVN provider driver (ovn) is supported on OKD on OpenStack deployments.

ovn is an integration driver for the load balancing that Octavia and OVN provide. It supports basic load balancing capabilities, and is based on OpenFlow rules. The driver is automatically enabled in Octavia by Director on deployments that use OVN Neutron ML2.

The Amphora provider driver is the default driver. If ovn is enabled, however, Kuryr uses it.

If Kuryr uses ovn instead of Amphora, it offers the following benefits:

  • Decreased resource requirements. Kuryr does not require a load balancer VM for each service.

  • Reduced network latency.

  • Increased service creation speed by using OpenFlow rules instead of a VM for each service.

  • Distributed load balancing actions across all nodes instead of centralized on Amphora VMs.

Known limitations of installing with Kuryr

Using OKD with Kuryr SDN has several known limitations.

OpenStack general limitations

Using OKD with Kuryr SDN has several limitations that apply to all versions and environments:

  • Service objects with the NodePort type are not supported.

  • Clusters that use the OVN Octavia provider driver support Service objects for which the .spec.selector property is unspecified only if the .subsets.addresses property of the Endpoints object includes the subnet of the nodes or pods.

  • If the subnet on which machines are created is not connected to a router, or if the subnet is connected, but the router has no external gateway set, Kuryr cannot create floating IPs for Service objects with type LoadBalancer.

  • Configuring the sessionAffinity=ClientIP property on Service objects does not have an effect. Kuryr does not support this setting.

OpenStack version limitations

Using OKD with Kuryr SDN has several limitations that depend on the OpenStack version.

  • OpenStack versions before 16 use the default Octavia load balancer driver (Amphora). This driver requires that one Amphora load balancer VM is deployed per OKD service. Creating too many services can cause you to run out of resources.

    Deployments of later versions of OpenStack that have the OVN Octavia driver disabled also use the Amphora driver. They are subject to the same resource concerns as earlier versions of OpenStack.

  • Octavia OpenStack versions before 13.0.13 do not support UDP listeners. Therefore, OKD UDP services are not supported.

  • Octavia OpenStack versions before 13.0.13 cannot listen to multiple protocols on the same port. Services that expose the same port to different protocols, like TCP and UDP, are not supported.

  • Kuryr SDN does not support automatic unidling by a service.

OpenStack environment limitations

There are limitations when using Kuryr SDN that depend on your deployment environment.

Because of Octavia’s lack of support for the UDP protocol and multiple listeners, if the OpenStack version is earlier than 13.0.13, Kuryr forces pods to use TCP for DNS resolution.

In Go versions 1.12 and earlier, applications that are compiled with CGO support disabled use UDP only. In this case, the native Go resolver does not recognize the use-vc option in resolv.conf, which controls whether TCP is forced for DNS resolution. As a result, UDP is still used for DNS resolution, which fails.

To ensure that TCP forcing is allowed, compile applications either with the environment variable CGO_ENABLED set to 1, i.e. CGO_ENABLED=1, or ensure that the variable is absent.

In Go versions 1.13 and later, TCP is used automatically if DNS resolution using UDP fails.

musl-based containers, including Alpine-based containers, do not support the use-vc option.

OpenStack upgrade limitations

As a result of the OpenStack upgrade process, the Octavia API might be changed, and upgrades to the Amphora images that are used for load balancers might be required.

You can address API changes on an individual basis.

If the Amphora image is upgraded, the OpenStack operator can handle existing load balancer VMs in two ways:

  • Upgrade each VM by triggering a load balancer failover.

  • Leave responsibility for upgrading the VMs to users.

If the operator takes the first option, there might be short downtimes during failovers.

If the operator takes the second option, the existing load balancers will not support upgraded Octavia API features, like UDP listeners. In this case, users must recreate their Services to use these features.

If OKD detects a new Octavia version that supports UDP load balancing, it recreates the DNS service automatically. The service recreation ensures that the service default supports UDP load balancing.

The recreation causes the DNS service approximately one minute of downtime.

Control plane machines

By default, the OKD installation process creates three control plane machines.

Each machine requires:

  • An instance from the OpenStack quota

  • A port from the OpenStack quota

  • A flavor with at least 16 GB memory and 4 vCPUs

  • At least 100 GB storage space from the OpenStack quota

Compute machines

By default, the OKD installation process creates three compute machines.

Each machine requires:

  • An instance from the OpenStack quota

  • A port from the OpenStack quota

  • A flavor with at least 8 GB memory and 2 vCPUs

  • At least 100 GB storage space from the OpenStack quota

Compute machines host the applications that you run on OKD; aim to run as many as you can.

Bootstrap machine

During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.

The bootstrap machine requires:

  • An instance from the OpenStack quota

  • A port from the OpenStack quota

  • A flavor with at least 16 GB memory and 4 vCPUs

  • At least 100 GB storage space from the OpenStack quota

Downloading playbook dependencies

The Ansible playbooks that simplify the installation process on user-provisioned infrastructure require several Python modules. On the machine where you will run the installer, add the modules' repositories and then download them.

These instructions assume that you are using Fedora 8.
Prerequisites
  • Python 3 is installed on your machine.

Procedure
  1. On a command line, add the repositories:

    1. Register with Red Hat Subscription Manager:

      $ sudo subscription-manager register # If not done already
    2. Pull the latest subscription data:

      $ sudo subscription-manager attach --pool=$YOUR_POOLID # If not done already
    3. Disable the current repositories:

      $ sudo subscription-manager repos --disable=* # If not done already
    4. Add the required repositories:

      $ sudo subscription-manager repos \
        --enable=rhel-8-for-x86_64-baseos-rpms \
        --enable=openstack-16-tools-for-rhel-8-x86_64-rpms \
        --enable=ansible-2.9-for-rhel-8-x86_64-rpms \
        --enable=rhel-8-for-x86_64-appstream-rpms
  2. Install the modules:

    $ sudo yum install python3-openstackclient ansible python3-openstacksdk python3-netaddr
  3. Ensure that the python command points to python3:

    $ sudo alternatives --set python /usr/bin/python3

Downloading the installation playbooks

Download Ansible playbooks that you can use to install OKD on your own OpenStack infrastructure.

Prerequisites
  • The curl command-line tool is available on your machine.

Procedure
  • To download the playbooks to your working directory, run the following script from a command line:

    $ xargs -n 1 curl -O <<< '
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/bootstrap.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/common.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/compute-nodes.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/control-plane.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/inventory.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/network.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/security-groups.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-bootstrap.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-compute-nodes.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-control-plane.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-load-balancers.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-network.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-security-groups.yaml
            https://raw.githubusercontent.com/openshift/installer/release-4.10/upi/openstack/down-containers.yaml'

The playbooks are downloaded to your machine.

During the installation process, you can modify the playbooks to configure your deployment.

Retain all playbooks for the life of your cluster. You must have the playbooks to remove your OKD cluster from OpenStack.

You must match any edits you make in the bootstrap.yaml, compute-nodes.yaml, control-plane.yaml, network.yaml, and security-groups.yaml files to the corresponding playbooks that are prefixed with down-. For example, edits to the bootstrap.yaml file must be reflected in the down-bootstrap.yaml file, too. If you do not edit both files, the supported cluster removal process will fail.

Obtaining the installation program

Before you install OKD, download the installation file on a local computer.

Prerequisites
  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure
  1. Download installer from https://github.com/openshift/okd/releases

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.

  2. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  3. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.

    Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}} as the pull secret when prompted during the installation.

    • Red Hat Operators are not available.

    • The Telemetry and Insights operators do not send data to Red Hat.

    • Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.

Generating a key pair for cluster node SSH access

During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the /home/core/.ssh/authorized_keys.d/core file. However, the Machine Config Operator manages SSH keys in the /home/core/.ssh/authorized_keys file and configures sshd to ignore the /home/core/.ssh/authorized_keys.d/core file. As a result, newly provisioned OKD nodes are not accessible using SSH until the Machine Config Operator reconciles the machine configs with the authorized_keys file. After you can access the nodes using SSH, you can delete the /home/core/.ssh/authorized_keys.d/core file.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

    If you plan to install an OKD cluster that uses fips validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874

      If your cluster is in fips mode, only use fips-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OKD, provide the SSH public key to the installation program.

Creating the Fedora CoreOS (FCOS) image

The OKD installation program requires that a Fedora CoreOS (FCOS) image be present in the OpenStack cluster. Retrieve the latest FCOS image, then upload it using the OpenStack CLI.

Prerequisites
  • The OpenStack CLI is installed.

Procedure
  1. Log in to the Red Hat Customer Portal’s Product Downloads page.

  2. Under Version, select the most recent release of OKD 4.10 for Fedora 8.

    The FCOS images might not change with every release of OKD. You must download images with the highest version that is less than or equal to the OKD version that you install. Use the image versions that match your OKD version if they are available.

  3. Download the Fedora CoreOS (FCOS) - OpenStack Image (QCOW).

  4. Decompress the image.

    You must decompress the OpenStack image before the cluster can use it. The name of the downloaded file might not contain a compression extension, like .gz or .tgz. To find out if or how the file is compressed, in a command line, enter:

    $ file <name_of_downloaded_file>
  5. From the image that you downloaded, create an image that is named rhcos in your cluster by using the OpenStack CLI:

    $ openstack image create --container-format=bare --disk-format=qcow2 --file rhcos-${RHCOS_VERSION}-openstack.qcow2 rhcos
    Depending on your OpenStack environment, you might be able to upload the image in either .raw or .qcow2 formats. If you use Ceph, you must use the .raw format.
    If the installation program finds multiple images with the same name, it chooses one of them at random. To avoid this behavior, create unique names for resources in OpenStack.

After you upload the image to OpenStack, it is usable in the installation process.

Verifying external network access

The OKD installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in OpenStack.

Procedure
  1. Using the OpenStack CLI, verify the name and ID of the 'External' network:

    $ openstack network list --long -c ID -c Name -c "Router Type"
    Example output
    +--------------------------------------+----------------+-------------+
    | ID                                   | Name           | Router Type |
    +--------------------------------------+----------------+-------------+
    | 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External    |
    +--------------------------------------+----------------+-------------+

A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.

If the Neutron trunk service plugin is enabled, a trunk port is created by default. For more information, see Neutron trunk port.

Enabling access to the environment

At deployment, all OKD machines are created in a OpenStack-tenant network. Therefore, they are not accessible directly in most OpenStack deployments.

You can configure OKD API and application access by using floating IP addresses (fips) during installation. You can also complete an installation without configuring fips, but the installer will not configure a way to reach the API or applications externally.

Enabling access with floating IP addresses

Create floating IP (FIP) addresses for external access to the OKD API, cluster applications, and the bootstrap process.

Procedure
  1. Using the OpenStack CLI, create the API FIP:

    $ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>
  2. Using the OpenStack CLI, create the apps, or Ingress, FIP:

    $ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>
  3. By using the OpenStack CLI, create the bootstrap FIP:

    $ openstack floating ip create --description "bootstrap machine" <external_network>
  4. Add records that follow these patterns to your DNS server for the API and Ingress fips:

    api.<cluster_name>.<base_domain>.  IN  A  <API_FIP>
    *.apps.<cluster_name>.<base_domain>. IN  A <apps_FIP>

    If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your /etc/hosts file:

    • <api_floating_ip> api.<cluster_name>.<base_domain>

    • <application_floating_ip> grafana-openshift-monitoring.apps.<cluster_name>.<base_domain>

    • <application_floating_ip> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<base_domain>

    • <application_floating_ip> oauth-openshift.apps.<cluster_name>.<base_domain>

    • <application_floating_ip> console-openshift-console.apps.<cluster_name>.<base_domain>

    • application_floating_ip integrated-oauth-server-openshift-authentication.apps.<cluster_name>.<base_domain>

    The cluster domain names in the /etc/hosts file grant access to the web console and the monitoring interface of your cluster locally. You can also use the kubectl or oc. You can access the user applications by using the additional entries pointing to the <application_floating_ip>. This action makes the API and applications accessible to only you, which is not suitable for production deployment, but does allow installation for development and testing.

  5. Add the fips to the inventory.yaml file as the values of the following variables:

    • os_api_fip

    • os_bootstrap_fip

    • os_ingress_fip

If you use these values, you must also enter an external network as the value of the os_external_network variable in the inventory.yaml file.

You can make OKD resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration.

Completing installation without floating IP addresses

You can install OKD on OpenStack without providing floating IP addresses.

In the inventory.yaml file, do not define the following variables:

  • os_api_fip

  • os_bootstrap_fip

  • os_ingress_fip

If you cannot provide an external network, you can also leave os_external_network blank. If you do not provide a value for os_external_network, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. Later in the installation process, when you create network resources, you must configure external connectivity on your own.

If you run the installer with the wait-for command from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.

You can enable name resolution by creating DNS records for the API and Ingress ports. For example:

api.<cluster_name>.<base_domain>.  IN  A  <api_port_IP>
*.apps.<cluster_name>.<base_domain>. IN  A <ingress_port_IP>

If you do not control the DNS server, you can add the record to your /etc/hosts file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.

Defining parameters for the installation program

The OKD installation program relies on a file that is called clouds.yaml. The file describes OpenStack configuration parameters, including the project name, log in information, and authorization service URLs.

Procedure
  1. Create the clouds.yaml file:

    • If your OpenStack distribution includes the Horizon web UI, generate a clouds.yaml file in it.

      Remember to add a password to the auth field. You can also keep secrets in a separate file from clouds.yaml.

    • If your OpenStack distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml, see Config files in the OpenStack documentation.

      clouds:
        shiftstack:
          auth:
            auth_url: http://10.10.14.42:5000/v3
            project_name: shiftstack
            username: <username>
            password: <password>
            user_domain_name: Default
            project_domain_name: Default
        dev-env:
          region_name: RegionOne
          auth:
            username: <username>
            password: <password>
            project_name: 'devonly'
            auth_url: 'https://10.10.14.22:5001/v2.0'
  2. If your OpenStack installation uses self-signed certificate authority (CA) certificates for endpoint authentication:

    1. Copy the certificate authority file to your machine.

    2. Add the cacerts key to the clouds.yaml file. The value must be an absolute, non-root-accessible path to the CA certificate:

      clouds:
        shiftstack:
          ...
          cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"

      After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the ca-cert.pem key in the cloud-provider-config keymap. On a command line, run:

      $ oc edit configmap -n openshift-config cloud-provider-config
  3. Place the clouds.yaml file in one of the following locations:

    1. The value of the OS_CLIENT_CONFIG_FILE environment variable

    2. The current directory

    3. A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml

    4. A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml

      The installation program searches for clouds.yaml in that order.

Creating the installation configuration file

You can customize the OKD cluster you install on OpenStack.

Prerequisites
  • Obtain the OKD installation program and the pull secret for your cluster.

  • Obtain service principal permissions at the subscription level.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select openstack as the platform to target.

      3. Specify the OpenStack external network name to use for installing the cluster.

      4. Specify the floating IP address to use for external access to the OpenShift API.

      5. Specify a OpenStack flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.

      6. Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.

      7. Enter a name for your cluster. The name must be 14 or fewer characters long.

      8. Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.

  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

You now have the file install-config.yaml in the directory that you specified.

Installation configuration parameters

Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 2. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev. The string must be 14 characters or fewer long.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 3. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) plugin to install.

Either OpenShiftSDN or OVNKubernetes. The default value is OVNKubernetes.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 4. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OKD process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OKD cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64.

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms and IBM Cloud VPC.

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key or keys to authenticate access your cluster machines.

For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

One or more keys. For example:

sshKey:
  <key1>
  <key2>
  <key3>

Additional OpenStack configuration parameters

Additional OpenStack configuration parameters are described in the following table:

Table 5. Additional OpenStack parameters
Parameter Description Values

compute.platform.openstack.rootVolume.size

For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.

Integer, for example 30.

compute.platform.openstack.rootVolume.type

For compute machines, the root volume’s type.

String, for example performance.

controlPlane.platform.openstack.rootVolume.size

For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage.

Integer, for example 30.

controlPlane.platform.openstack.rootVolume.type

For control plane machines, the root volume’s type.

String, for example performance.

platform.openstack.cloud

The name of the OpenStack cloud to use from the list of clouds in the clouds.yaml file.

String, for example MyCloud.

platform.openstack.externalNetwork

The OpenStack external network name to be used for installation.

String, for example external.

platform.openstack.computeFlavor

The OpenStack flavor to use for control plane and compute machines.

This property is deprecated. To use a flavor as the default for all machine pools, add it as the value of the type key in the platform.openstack.defaultMachinePlatform property. You can also set a flavor value for each machine pool individually.

String, for example m1.xlarge.

Optional OpenStack configuration parameters

Optional OpenStack configuration parameters are described in the following table:

Table 6. Optional OpenStack parameters
Parameter Description Values

compute.platform.openstack.additionalNetworkIDs

Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks.

A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.

compute.platform.openstack.additionalSecurityGroupIDs

Additional security groups that are associated with compute machines.

A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.

compute.platform.openstack.zones

OpenStack Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the OpenStack administrator configured.

On clusters that use Kuryr, OpenStack Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property.

A list of strings. For example, ["zone-1", "zone-2"].

compute.platform.openstack.rootVolume.zones

For compute machines, the availability zone to install root volumes on. If you do not set a value for this parameter, the installer selects the default availability zone.

A list of strings, for example ["zone-1", "zone-2"].

compute.platform.openstack.serverGroupPolicy

Server group policy to apply to the group that will contain the compute machines in the pool. You cannot change server group policies or affiliations after creation. Supported options include anti-affinity, soft-affinity, and soft-anti-affinity. The default value is soft-anti-affinity.

An affinity policy prevents migrations and therefore affects OpenStack upgrades. The affinity policy is not supported.

If you use a strict anti-affinity policy, an additional OpenStack host is required during instance migration.

A server group policy to apply to the machine pool. For example, soft-affinity.

controlPlane.platform.openstack.additionalNetworkIDs

Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks.

A list of one or more UUIDs as strings. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.

controlPlane.platform.openstack.additionalSecurityGroupIDs

Additional security groups that are associated with control plane machines.

A list of one or more UUIDs as strings. For example, 7ee219f3-d2e9-48a1-96c2-e7429f1b0da7.

controlPlane.platform.openstack.zones

OpenStack Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the OpenStack administrator configured.

On clusters that use Kuryr, OpenStack Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property.

A list of strings. For example, ["zone-1", "zone-2"].

controlPlane.platform.openstack.rootVolume.zones

For control plane machines, the availability zone to install root volumes on. If you do not set this value, the installer selects the default availability zone.

A list of strings, for example ["zone-1", "zone-2"].

controlPlane.platform.openstack.serverGroupPolicy

Server group policy to apply to the group that will contain the control plane machines in the pool. You cannot change server group policies or affiliations after creation. Supported options include anti-affinity, soft-affinity, and soft-anti-affinity. The default value is soft-anti-affinity.

An affinity policy prevents migrations, and therefore affects OpenStack upgrades. The affinity policy is not supported.

If you use a strict anti-affinity policy, an additional OpenStack host is required during instance migration.

A server group policy to apply to the machine pool. For example, soft-affinity.

platform.openstack.clusterOSImage

The location from which the installer downloads the FCOS image.

You must set this parameter to perform an installation in a restricted network.

An HTTP or HTTPS URL, optionally with an SHA-256 checksum.

For example, http://mirror.example.com/images/rhcos-43.81.201912131630.0-openstack.x86_64.qcow2.gz?sha256=ffebbd68e8a1f2a245ca19522c16c86f67f9ac8e4e0c1f0a812b068b16f7265d. The value can also be the name of an existing Glance image, for example my-rhcos.

platform.openstack.clusterOSImageProperties

Properties to add to the installer-uploaded ClusterOSImage in Glance. This property is ignored if platform.openstack.clusterOSImage is set to an existing Glance image.

You can use this property to exceed the default persistent volume (PV) limit for OpenStack of 26 PVs per node. To exceed the limit, set the hw_scsi_model property value to virtio-scsi and the hw_disk_bus value to scsi.

You can also use this property to enable the QEMU guest agent by including the hw_qemu_guest_agent property with a value of yes.

A list of key-value string pairs. For example, ["hw_scsi_model": "virtio-scsi", "hw_disk_bus": "scsi"].

platform.openstack.defaultMachinePlatform

The default machine pool platform configuration.

{
   "type": "ml.large",
   "rootVolume": {
      "size": 30,
      "type": "performance"
   }
}

platform.openstack.ingressFloatingIP

An existing floating IP address to associate with the Ingress port. To use this property, you must also define the platform.openstack.externalNetwork property.

An IP address, for example 128.0.0.1.

platform.openstack.apiFloatingIP

An existing floating IP address to associate with the API load balancer. To use this property, you must also define the platform.openstack.externalNetwork property.

An IP address, for example 128.0.0.1.

platform.openstack.externalDNS

IP addresses for external DNS servers that cluster instances use for DNS resolution.

A list of IP addresses as strings. For example, ["8.8.8.8", "192.168.1.12"].

platform.openstack.machinesSubnet

The UUID of a OpenStack subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet.

The first item in networking.machineNetwork must match the value of machinesSubnet.

If you deploy to a custom subnet, you cannot specify an external DNS server to the OKD installer. Instead, add DNS to the subnet in OpenStack.

A UUID as a string. For example, fa806b2f-ac49-4bce-b9db-124bc64209bf.

Custom subnets in OpenStack deployments

Optionally, you can deploy a cluster on a OpenStack subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet in the install-config.yaml file.

This subnet is used as the cluster’s primary subnet. By default, nodes and ports are created on it. You can create nodes and ports on a different OpenStack subnet by setting the value of the platform.openstack.machinesSubnet property to the subnet’s UUID.

Before you run the OKD installer with a custom subnet, verify that your configuration meets the following requirements:

  • The subnet that is used by platform.openstack.machinesSubnet has DHCP enabled.

  • The CIDR of platform.openstack.machinesSubnet matches the CIDR of networking.machineNetwork.

  • The installation program user has permission to create ports on this network, including ports with fixed IP addresses.

Clusters that use custom subnets have the following limitations:

  • If you plan to install a cluster that uses floating IP addresses, the platform.openstack.machinesSubnet subnet must be attached to a router that is connected to the externalNetwork network.

  • If the platform.openstack.machinesSubnet value is set in the install-config.yaml file, the installation program does not create a private network or subnet for your OpenStack machines.

  • You cannot use the platform.openstack.externalDNS property at the same time as a custom subnet. To add DNS to a cluster that uses a custom subnet, configure DNS on the OpenStack network.

By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for platform.openstack.apiVIP and platform.openstack.ingressVIP that are outside of the DHCP allocation pool.

Sample customized install-config.yaml file for OpenStack with Kuryr

To deploy with Kuryr SDN instead of the default OpenShift SDN, you must modify the install-config.yaml file to include Kuryr as the desired networking.networkType and proceed with the default OKD SDN installation steps. This sample install-config.yaml demonstrates all of the possible OpenStack customization options.

This sample file is provided for reference only. You must obtain your install-config.yaml file by using the installation program.

apiVersion: v1
baseDomain: example.com
controlPlane:
  name: master
  platform: {}
  replicas: 3
compute:
- name: worker
  platform:
    openstack:
      type: ml.large
  replicas: 3
metadata:
  name: example
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  serviceNetwork:
  - 172.30.0.0/16 (1)
  networkType: Kuryr
platform:
  openstack:
    cloud: mycloud
    externalNetwork: external
    computeFlavor: m1.xlarge
    apiFloatingIP: 128.0.0.1
    trunkSupport: true (2)
    octaviaSupport: true (2)
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
1 The Amphora Octavia driver creates two ports per load balancer. As a result, the service subnet that the installer creates is twice the size of the CIDR that is specified as the value of the serviceNetwork property. The larger range is required to prevent IP address conflicts.
2 Both trunkSupport and octaviaSupport are automatically discovered by the installer, so there is no need to set them. But if your environment does not meet both requirements, Kuryr SDN will not properly work. Trunks are needed to connect the pods to the OpenStack network and Octavia is required to create the OKD services.

Cluster deployment on OpenStack provider networks

You can deploy your OKD clusters on OpenStack with a primary network interface on a provider network. Provider networks are commonly used to give projects direct access to a public network that can be used to reach the internet. You can also share provider networks among projects as part of the network creation process.

OpenStack provider networks map directly to an existing physical network in the data center. A OpenStack administrator must create them.

In the following example, OKD workloads are connected to a data center by using a provider network:

A diagram that depicts four OpenShift workloads on OpenStack. Each workload is connected by its NIC to an external data center by using a provider network.

OKD clusters that are installed on provider networks do not require tenant networks or floating IP addresses. The installer does not create these resources during installation.

Example provider network types include flat (untagged) and VLAN (802.1Q tagged).

A cluster can support as many provider network connections as the network type allows. For example, VLAN networks typically support up to 4096 connections.

You can learn more about provider and tenant networks in the OpenStack documentation.

OpenStack provider network requirements for cluster installation

Before you install an OKD cluster, your OpenStack deployment and provider network must meet a number of conditions:

  • The OpenStack networking service (Neutron) is enabled and accessible through the OpenStack networking API.

  • The OpenStack networking service has the port security and allowed address pairs extensions enabled.

  • The provider network can be shared with other tenants.

    Use the openstack network create command with the --share flag to create a network that can be shared.

  • The OpenStack project that you use to install the cluster must own the provider network, as well as an appropriate subnet.

    To create a network for a project that is named "openshift," enter the following command
    $ openstack network create --project openshift
    To create a subnet for a project that is named "openshift," enter the following command
    $ openstack subnet create --project openshift

    To learn more about creating networks on OpenStack, read the provider networks documentation.

    If the cluster is owned by the admin user, you must run the installer as that user to create ports on the network.

    Provider networks must be owned by the OpenStack project that is used to create the cluster. If they are not, the OpenStack Compute service (Nova) cannot request a port from that network.

  • Verify that the provider network can reach the OpenStack metadata service IP address, which is 169.254.169.254 by default.

    Depending on your OpenStack SDN and networking service configuration, you might need to provide the route when you create the subnet. For example:

    $ openstack subnet create --dhcp --host-route destination=169.254.169.254/32,gateway=192.0.2.2 ...
  • Optional: To secure the network, create role-based access control (RBAC) rules that limit network access to a single project.

Deploying a cluster that has a primary interface on a provider network

You can deploy an OKD cluster that has its primary network interface on an OpenStack provider network.

Prerequisites
  • Your OpenStack deployment is configured as described by "OpenStack provider network requirements for cluster installation".

Procedure
  1. In a text editor, open the install-config.yaml file.

  2. Set the value of the platform.openstack.apiVIP property to the IP address for the API VIP.

  3. Set the value of the platform.openstack.ingressVIP property to the IP address for the Ingress VIP.

  4. Set the value of the platform.openstack.machinesSubnet property to the UUID of the provider network subnet.

  5. Set the value of the networking.machineNetwork.cidr property to the CIDR block of the provider network subnet.

The platform.openstack.apiVIP and platform.openstack.ingressVIP properties must both be unassigned IP addresses from the networking.machineNetwork.cidr block.

Section of an installation configuration file for a cluster that relies on a OpenStack provider network
        ...
        platform:
          openstack:
            apiVIP: 192.0.2.13
            ingressVIP: 192.0.2.23
            machinesSubnet: fa806b2f-ac49-4bce-b9db-124bc64209bf
            # ...
        networking:
          machineNetwork:
          - cidr: 192.0.2.0/24

You cannot set the platform.openstack.externalNetwork or platform.openstack.externalDNS parameters while using a provider network for the primary network interface.

When you deploy the cluster, the installer uses the install-config.yaml file to deploy the cluster on the provider network.

You can add additional networks, including provider networks, to the platform.openstack.additionalNetworkIDs list.

After you deploy your cluster, you can attach pods to additional networks. For more information, see Understanding multiple networks.

Kuryr ports pools

A Kuryr ports pool maintains a number of ports on standby for pod creation.

Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.

The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OKD cluster nodes.

Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.

Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml manifest file to configure ports pool behavior:

  • The enablePortPoolsPrepopulation parameter controls pool prepopulation, which forces Kuryr to add Neutron ports to the pools when the first pod that is configured to use the dedicated network for pods is created in a namespace. The default value is false.

  • The poolMinPorts parameter is the minimum number of free ports that are kept in the pool. The default value is 1.

  • The poolMaxPorts parameter is the maximum number of free ports that are kept in the pool. A value of 0 disables that upper bound. This is the default setting.

    If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.

  • The poolBatchPorts parameter defines the maximum number of Neutron ports that can be created at once. The default value is 3.

Adjusting Kuryr ports pools during installation

During installation, you can configure how Kuryr manages OpenStack Neutron ports to control the speed and efficiency of pod creation.

Prerequisites
  • Create and modify the install-config.yaml file.

Procedure
  1. From a command line, create the manifest files:

    $ ./openshift-install create manifests --dir <installation_directory> (1)
    1 For <installation_directory>, specify the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a file that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    $ touch <installation_directory>/manifests/cluster-network-03-config.yml (1)
    1 For <installation_directory>, specify the directory name that contains the manifests/ directory for your cluster.

    After creating the file, several network configuration files are in the manifests/ directory, as shown:

    $ ls <installation_directory>/manifests/cluster-network-*
    Example output
    cluster-network-01-crd.yml
    cluster-network-02-config.yml
    cluster-network-03-config.yml
  3. Open the cluster-network-03-config.yml file in an editor, and enter a custom resource (CR) that describes the Cluster Network Operator configuration that you want:

    $ oc edit networks.operator.openshift.io cluster
  4. Edit the settings to meet your requirements. The following file is provided as an example:

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      clusterNetwork:
      - cidr: 10.128.0.0/14
        hostPrefix: 23
      serviceNetwork:
      - 172.30.0.0/16
      defaultNetwork:
        type: Kuryr
        kuryrConfig:
          enablePortPoolsPrepopulation: false (1)
          poolMinPorts: 1 (2)
          poolBatchPorts: 3 (3)
          poolMaxPorts: 5 (4)
          openstackServiceNetwork: 172.30.0.0/15 (5)
    1 Set enablePortPoolsPrepopulation to true to make Kuryr create new Neutron ports when the first pod on the network for pods is created in a namespace. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value is false.
    2 Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts. The default value is 1.
    3 poolBatchPorts controls the number of new ports that are created if the number of free ports is lower than the value of poolMinPorts. The default value is 3.
    4 If the number of free ports in a pool is higher than the value of poolMaxPorts, Kuryr deletes them until the number matches that value. Setting this value to 0 disables this upper bound, preventing pools from shrinking. The default value is 0.
    5 The openStackServiceNetwork parameter defines the CIDR range of the network from which IP addresses are allocated to OpenStack Octavia’s LoadBalancers.

    If this parameter is used with the Amphora driver, Octavia takes two IP addresses from this network for each load balancer: one for OpenShift and the other for VRRP connections. Because these IP addresses are managed by OKD and Neutron respectively, they must come from different pools. Therefore, the value of openStackServiceNetwork must be at least twice the size of the value of serviceNetwork, and the value of serviceNetwork must overlap entirely with the range that is defined by openStackServiceNetwork.

    The CNO verifies that VRRP IP addresses that are taken from the range that is defined by this parameter do not overlap with the range that is defined by the serviceNetwork parameter.

    If this parameter is not set, the CNO uses an expanded value of serviceNetwork that is determined by decrementing the prefix size by 1.

  5. Save the cluster-network-03-config.yml file, and exit the text editor.

  6. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory while creating the cluster.

Setting a custom subnet for machines

The IP range that the installation program uses by default might not match the Neutron subnet that you create when you install OKD. If necessary, update the CIDR value for new machines by editing the installation configuration file.

Prerequisites
  • You have the install-config.yaml file that was generated by the OKD installation program.

Procedure
  1. On a command line, browse to the directory that contains install-config.yaml.

  2. From that directory, either run a script to edit the install-config.yaml file or update the file manually:

    • To set the value by using a script, run:

      $ python -c '
      import yaml;
      path = "install-config.yaml";
      data = yaml.safe_load(open(path));
      data["networking"]["machineNetwork"] = [{"cidr": "192.168.0.0/18"}]; (1)
      open(path, "w").write(yaml.dump(data, default_flow_style=False))'
      1 Insert a value that matches your intended Neutron subnet, e.g. 192.0.2.0/24.
    • To set the value manually, open the file and set the value of networking.machineCIDR to something that matches your intended Neutron subnet.

Emptying compute machine pools

To proceed with an installation that uses your own infrastructure, set the number of compute machines in the installation configuration file to zero. Later, you create these machines manually.

Prerequisites
  • You have the install-config.yaml file that was generated by the OKD installation program.

Procedure
  1. On a command line, browse to the directory that contains install-config.yaml.

  2. From that directory, either run a script to edit the install-config.yaml file or update the file manually:

    • To set the value by using a script, run:

      $ python -c '
      import yaml;
      path = "install-config.yaml";
      data = yaml.safe_load(open(path));
      data["compute"][0]["replicas"] = 0;
      open(path, "w").write(yaml.dump(data, default_flow_style=False))'
    • To set the value manually, open the file and set the value of compute.<first entry>.replicas to 0.

Modifying the network type

By default, the installation program selects the OpenShiftSDN network type. To use Kuryr instead, change the value in the installation configuration file that the program generated.

Prerequisites
  • You have the file install-config.yaml that was generated by the OKD installation program

Procedure
  1. In a command prompt, browse to the directory that contains install-config.yaml.

  2. From that directory, either run a script to edit the install-config.yaml file or update the file manually:

    • To set the value by using a script, run:

      $ python -c '
      import yaml;
      path = "install-config.yaml";
      data = yaml.safe_load(open(path));
      data["networking"]["networkType"] = "Kuryr";
      open(path, "w").write(yaml.dump(data, default_flow_style=False))'
    • To set the value manually, open the file and set networking.networkType to "Kuryr".

Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.

  • The Ignition config files that the OKD installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Prerequisites
  • You obtained the OKD installation program.

  • You created the install-config.yaml installation configuration file.

Procedure
  1. Change to the directory that contains the OKD installation program and generate the Kubernetes manifests for the cluster:

    $ ./openshift-install create manifests --dir <installation_directory> (1)
    1 For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
  2. Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:

    $ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml

    Because you create and manage these resources yourself, you do not have to initialize them.

    • You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.

  3. Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:

    1. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

    2. Locate the mastersSchedulable parameter and ensure that it is set to false.

    3. Save and exit the file.

  4. To create the Ignition configuration files, run the following command from the directory that contains the installation program:

    $ ./openshift-install create ignition-configs --dir <installation_directory> (1)
    1 For <installation_directory>, specify the same installation directory.

    Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The kubeadmin-password and kubeconfig files are created in the ./<installation_directory>/auth directory:

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
  5. Export the metadata file’s infraID key as an environment variable:

    $ export INFRA_ID=$(jq -r .infraID metadata.json)
Extract the infraID key from metadata.json and use it as a prefix for all of the OpenStack resources that you create. By doing so, you avoid name conflicts when making multiple deployments in the same project.

Preparing the bootstrap Ignition files

The OKD installation process relies on bootstrap machines that are created from a bootstrap Ignition configuration file.

Edit the file and upload it. Then, create a secondary bootstrap Ignition configuration file that OpenStack uses to download the primary file.

Prerequisites
  • You have the bootstrap Ignition file that the installer program generates, bootstrap.ign.

  • The infrastructure ID from the installer’s metadata file is set as an environment variable ($INFRA_ID).

    • If the variable is not set, see Creating the Kubernetes manifest and Ignition config files.

  • You have an HTTP(S)-accessible way to store the bootstrap Ignition file.

    • The documented procedure uses the OpenStack image service (Glance), but you can also use the OpenStack storage service (Swift), Amazon S3, an internal HTTP server, or an ad hoc Nova server.

Procedure
  1. Run the following Python script. The script modifies the bootstrap Ignition file to set the hostname and, if available, CA certificate file when it runs:

    import base64
    import json
    import os
    
    with open('bootstrap.ign', 'r') as f:
        ignition = json.load(f)
    
    files = ignition['storage'].get('files', [])
    
    infra_id = os.environ.get('INFRA_ID', 'openshift').encode()
    hostname_b64 = base64.standard_b64encode(infra_id + b'-bootstrap\n').decode().strip()
    files.append(
    {
        'path': '/etc/hostname',
        'mode': 420,
        'contents': {
            'source': 'data:text/plain;charset=utf-8;base64,' + hostname_b64
        }
    })
    
    ca_cert_path = os.environ.get('OS_CACERT', '')
    if ca_cert_path:
        with open(ca_cert_path, 'r') as f:
            ca_cert = f.read().encode()
            ca_cert_b64 = base64.standard_b64encode(ca_cert).decode().strip()
    
        files.append(
        {
            'path': '/opt/openshift/tls/cloud-ca-cert.pem',
            'mode': 420,
            'contents': {
                'source': 'data:text/plain;charset=utf-8;base64,' + ca_cert_b64
            }
        })
    
    ignition['storage']['files'] = files;
    
    with open('bootstrap.ign', 'w') as f:
        json.dump(ignition, f)
  2. Using the OpenStack CLI, create an image that uses the bootstrap Ignition file:

    $ openstack image create --disk-format=raw --container-format=bare --file bootstrap.ign <image_name>
  3. Get the image’s details:

    $ openstack image show <image_name>

    Make a note of the file value; it follows the pattern v2/images/<image_ID>/file.

    Verify that the image you created is active.
  4. Retrieve the image service’s public address:

    $ openstack catalog show image
  5. Combine the public address with the image file value and save the result as the storage location. The location follows the pattern <image_service_public_URL>/v2/images/<image_ID>/file.

  6. Generate an auth token and save the token ID:

    $ openstack token issue -c id -f value
  7. Insert the following content into a file called $INFRA_ID-bootstrap-ignition.json and edit the placeholders to match your own values:

    {
      "ignition": {
        "config": {
          "merge": [{
            "source": "<storage_url>", (1)
            "httpHeaders": [{
              "name": "X-Auth-Token", (2)
              "value": "<token_ID>" (3)
            }]
          }]
        },
        "security": {
          "tls": {
            "certificateAuthorities": [{
              "source": "data:text/plain;charset=utf-8;base64,<base64_encoded_certificate>" (4)
            }]
          }
        },
        "version": "3.2.0"
      }
    }
    1 Replace the value of ignition.config.merge.source with the bootstrap Ignition file storage URL.
    2 Set name in httpHeaders to "X-Auth-Token".
    3 Set value in httpHeaders to your token’s ID.
    4 If the bootstrap Ignition file server uses a self-signed certificate, include the base64-encoded certificate.
  8. Save the secondary Ignition config file.

The bootstrap Ignition data will be passed to OpenStack during installation.

The bootstrap Ignition file contains sensitive information, like clouds.yaml credentials. Ensure that you store it in a secure place, and delete it after you complete the installation process.

Creating control plane Ignition config files on OpenStack

Installing OKD on OpenStack on your own infrastructure requires control plane Ignition config files. You must create multiple config files.

As with the bootstrap Ignition configuration, you must explicitly define a hostname for each control plane machine.
Prerequisites
  • The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).

    • If the variable is not set, see "Creating the Kubernetes manifest and Ignition config files".

Procedure
  • On a command line, run the following Python script:

    $ for index in $(seq 0 2); do
        MASTER_HOSTNAME="$INFRA_ID-master-$index\n"
        python -c "import base64, json, sys;
    ignition = json.load(sys.stdin);
    storage = ignition.get('storage', {});
    files = storage.get('files', []);
    files.append({'path': '/etc/hostname', 'mode': 420, 'contents': {'source': 'data:text/plain;charset=utf-8;base64,' + base64.standard_b64encode(b'$MASTER_HOSTNAME').decode().strip(), 'verification': {}}, 'filesystem': 'root'});
    storage['files'] = files;
    ignition['storage'] = storage
    json.dump(ignition, sys.stdout)" <master.ign >"$INFRA_ID-master-$index-ignition.json"
    done

    You now have three control plane Ignition files: <INFRA_ID>-master-0-ignition.json, <INFRA_ID>-master-1-ignition.json, and <INFRA_ID>-master-2-ignition.json.

Creating network resources on OpenStack

Create the network resources that an OKD on OpenStack installation on your own infrastructure requires. To save time, run supplied Ansible playbooks that generate security groups, networks, subnets, routers, and ports.

Prerequisites
  • Python 3 is installed on your machine.

  • You downloaded the modules in "Downloading playbook dependencies".

  • You downloaded the playbooks in "Downloading the installation playbooks".

Procedure
  1. Optional: Add an external network value to the inventory.yaml playbook:

    Example external network value in the inventory.yaml Ansible playbook
    ...
          # The public network providing connectivity to the cluster. If not
          # provided, the cluster external connectivity must be provided in another
          # way.
    
          # Required for os_api_fip, os_ingress_fip, os_bootstrap_fip.
          os_external_network: 'external'
    ...

    If you did not provide a value for os_external_network in the inventory.yaml file, you must ensure that VMs can access Glance and an external connection yourself.

  2. Optional: Add external network and floating IP (FIP) address values to the inventory.yaml playbook:

    Example FIP values in the inventory.yaml Ansible playbook
    ...
          # OpenShift API floating IP address. If this value is non-empty, the
          # corresponding floating IP will be attached to the Control Plane to
          # serve the OpenShift API.
          os_api_fip: '203.0.113.23'
    
          # OpenShift Ingress floating IP address. If this value is non-empty, the
          # corresponding floating IP will be attached to the worker nodes to serve
          # the applications.
          os_ingress_fip: '203.0.113.19'
    
          # If this value is non-empty, the corresponding floating IP will be
          # attached to the bootstrap machine. This is needed for collecting logs
          # in case of install failure.
          os_bootstrap_fip: '203.0.113.20'

    If you do not define values for os_api_fip and os_ingress_fip, you must perform post-installation network configuration.

    If you do not define a value for os_bootstrap_fip, the installer cannot download debugging information from failed installations.

    See "Enabling access to the environment" for more information.

  3. On a command line, create security groups by running the security-groups.yaml playbook:

    $ ansible-playbook -i inventory.yaml security-groups.yaml
  4. On a command line, create a network, subnet, and router by running the network.yaml playbook:

    $ ansible-playbook -i inventory.yaml network.yaml
  5. Optional: If you want to control the default resolvers that Nova servers use, run the OpenStack CLI command:

    $ openstack subnet set --dns-nameserver <server_1> --dns-nameserver <server_2> "$INFRA_ID-nodes"

Creating the bootstrap machine on OpenStack

Create a bootstrap machine and give it the network access it needs to run on OpenStack. Red Hat provides an Ansible playbook that you run to simplify this process.

Prerequisites
  • You downloaded the modules in "Downloading playbook dependencies".

  • You downloaded the playbooks in "Downloading the installation playbooks".

  • The inventory.yaml, common.yaml, and bootstrap.yaml Ansible playbooks are in a common directory.

  • The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.

Procedure
  1. On a command line, change the working directory to the location of the playbooks.

  2. On a command line, run the bootstrap.yaml playbook:

    $ ansible-playbook -i inventory.yaml bootstrap.yaml
  3. After the bootstrap server is active, view the logs to verify that the Ignition files were received:

    $ openstack console log show "$INFRA_ID-bootstrap"

Creating the control plane machines on OpenStack

Create three control plane machines by using the Ignition config files that you generated. Red Hat provides an Ansible playbook that you run to simplify this process.

Prerequisites
  • You downloaded the modules in "Downloading playbook dependencies".

  • You downloaded the playbooks in "Downloading the installation playbooks".

  • The infrastructure ID from the installation program’s metadata file is set as an environment variable ($INFRA_ID).

  • The inventory.yaml, common.yaml, and control-plane.yaml Ansible playbooks are in a common directory.

  • You have the three Ignition files that were created in "Creating control plane Ignition config files".

Procedure
  1. On a command line, change the working directory to the location of the playbooks.

  2. If the control plane Ignition config files aren’t already in your working directory, copy them into it.

  3. On a command line, run the control-plane.yaml playbook:

    $ ansible-playbook -i inventory.yaml control-plane.yaml
  4. Run the following command to monitor the bootstrapping process:

    $ openshift-install wait-for bootstrap-complete

    You will see messages that confirm that the control plane machines are running and have joined the cluster:

    INFO API v1.23.0 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    ...
    INFO It is now safe to remove the bootstrap resources

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

Prerequisites
  • You deployed an OKD cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Deleting bootstrap resources from OpenStack

Delete the bootstrap resources that you no longer need.

Prerequisites
  • You downloaded the modules in "Downloading playbook dependencies".

  • You downloaded the playbooks in "Downloading the installation playbooks".

  • The inventory.yaml, common.yaml, and down-bootstrap.yaml Ansible playbooks are in a common directory.

  • The control plane machines are running.

    • If you do not know the status of the machines, see "Verifying cluster status".

Procedure
  1. On a command line, change the working directory to the location of the playbooks.

  2. On a command line, run the down-bootstrap.yaml playbook:

    $ ansible-playbook -i inventory.yaml down-bootstrap.yaml

The bootstrap port, server, and floating IP address are deleted.

If you did not disable the bootstrap Ignition file URL earlier, do so now.

Creating compute machines on OpenStack

After standing up the control plane, create compute machines. Red Hat provides an Ansible playbook that you run to simplify this process.

Prerequisites
  • You downloaded the modules in "Downloading playbook dependencies".

  • You downloaded the playbooks in "Downloading the installation playbooks".

  • The inventory.yaml, common.yaml, and compute-nodes.yaml Ansible playbooks are in a common directory.

  • The metadata.json file that the installation program created is in the same directory as the Ansible playbooks.

  • The control plane is active.

Procedure
  1. On a command line, change the working directory to the location of the playbooks.

  2. On a command line, run the playbook:

    $ ansible-playbook -i inventory.yaml compute-nodes.yaml
Next steps
  • Approve the certificate signing requests for the machines.

Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites
  • You added machines to your cluster.

Procedure
  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.23.0
    master-1  Ready     master  63m  v1.23.0
    master-2  Ready     master  64m  v1.23.0

    The output lists all of the machines that you created.

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    $ oc get csr
    Example output
    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> (1)
      1 <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    $ oc get nodes
    Example output
    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.23.0
    master-1  Ready     master  73m  v1.23.0
    master-2  Ready     master  74m  v1.23.0
    worker-0  Ready     worker  11m  v1.23.0
    worker-1  Ready     worker  11m  v1.23.0

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

Verifying a successful installation

Verify that the OKD installation is complete.

Prerequisites
  • You have the installation program (openshift-install)

Procedure
  • On a command line, enter:

    $ openshift-install --log-level debug wait-for install-complete

The program outputs the console URL, as well as the administrator’s login information.

Additional resources

Next steps