$ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>
install-config.yaml
file for RHOSP with KuryrIn OKD version 4.7, you can install a customized cluster on
Red Hat OpenStack Platform (RHOSP) that uses Kuryr SDN. To customize the installation, modify parameters in the install-config.yaml
before you install the cluster.
Review details about the OKD installation and update processes.
Verify that OKD 4.7 is compatible with your RHOSP version by using the "Supported platforms for OpenShift clusters" section. You can also compare platform support across different versions by viewing the OKD on RHOSP support matrix.
Verify that your network configuration does not rely on a provider network. Provider networks are not supported.
Have a storage service installed in RHOSP, like block storage (Cinder) or object storage (Swift). Object storage is the recommended storage technology for OKD registry cluster deployment. For more information, see Optimizing storage.
Kuryr is a container network interface (CNI) plug-in solution that uses the Neutron and Octavia Red Hat OpenStack Platform (RHOSP) services to provide networking for pods and Services.
Kuryr and OKD integration is primarily designed for OKD clusters running on RHOSP VMs. Kuryr improves the network performance by plugging OKD pods into RHOSP SDN. In addition, it provides interconnectivity between pods and RHOSP virtual instances.
Kuryr components are installed as pods in OKD using the
openshift-kuryr
namespace:
kuryr-controller
- a single service instance installed on a master
node.
This is modeled in OKD as a Deployment
object.
kuryr-cni
- a container installing and configuring Kuryr as a CNI driver on
each OKD node. This is modeled in OKD as a DaemonSet
object.
The Kuryr controller watches the OKD API server for pod, service, and namespace create, update, and delete events. It maps the OKD API calls to corresponding objects in Neutron and Octavia. This means that every network solution that implements the Neutron trunk port functionality can be used to back OKD via Kuryr. This includes open source solutions such as Open vSwitch (OVS) and Open Virtual Network (OVN) as well as Neutron-compatible commercial SDNs.
Kuryr is recommended for OKD deployments on encapsulated RHOSP tenant networks to avoid double encapsulation, such as running an encapsulated OKD SDN over an RHOSP network.
If you use provider networks or tenant VLANs, you do not need to use Kuryr to avoid double encapsulation. The performance benefit is negligible. Depending on your configuration, though, using Kuryr to avoid having two overlays might still be beneficial.
Kuryr is not recommended in deployments where all of the following criteria are true:
The RHOSP version is less than 16.
The deployment uses UDP services, or a large number of TCP services on few hypervisors.
or
The ovn-octavia
Octavia driver is disabled.
The deployment uses a large number of TCP services on few hypervisors.
When using Kuryr SDN, the pods, services, namespaces, and network policies are using resources from the RHOSP quota; this increases the minimum requirements. Kuryr also has some additional requirements on top of what a default install requires.
Use the following quota to satisfy a default cluster’s minimum requirements:
Resource | Value |
---|---|
Floating IP addresses |
3 - plus the expected number of Services of LoadBalancer type |
Ports |
1500 - 1 needed per Pod |
Routers |
1 |
Subnets |
250 - 1 needed per Namespace/Project |
Networks |
250 - 1 needed per Namespace/Project |
RAM |
112 GB |
vCPUs |
28 |
Volume storage |
275 GB |
Instances |
7 |
Security groups |
250 - 1 needed per Service and per NetworkPolicy |
Security group rules |
1000 |
Load balancers |
100 - 1 needed per Service |
Load balancer listeners |
500 - 1 needed per Service-exposed port |
Load balancer pools |
500 - 1 needed per Service-exposed port |
A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
If RHOSP object storage (Swift) is available and operated by a user account with the |
If you are using Red Hat OpenStack Platform (RHOSP) version 16 with the Amphora driver rather than the OVN Octavia driver, security groups are associated with service accounts instead of user projects. |
Take the following notes into consideration when setting resources:
The number of ports that are required is larger than the number of pods. Kuryr uses ports pools to have pre-created ports ready to be used by pods and speed up the pods' booting time.
Each network policy is mapped into an RHOSP security group, and
depending on the NetworkPolicy
spec, one or more rules are added to the
security group.
Each service is mapped to an RHOSP load balancer. Consider this requirement when estimating the number of security groups required for the quota.
If you are using
RHOSP version 15 or earlier, or the ovn-octavia driver
, each load balancer
has a security group with the user project.
The quota does not account for load balancer resources (such as VM resources), but you must consider these resources when you decide the RHOSP deployment’s size. The default installation will have more than 50 load balancers; the clusters must be able to accommodate them.
If you are using RHOSP version 16 with the OVN Octavia driver enabled, only one load balancer VM is generated; services are load balanced through OVN flows.
An OKD deployment comprises control plane machines, compute machines, and a bootstrap machine.
To enable Kuryr SDN, your environment must meet the following requirements:
Run RHOSP 13+.
Have Overcloud with Octavia.
Use Neutron Trunk ports extension.
Use openvswitch
firewall driver if ML2/OVS Neutron driver is used instead
of ovs-hybrid
.
When using Kuryr SDN, you must increase quotas to satisfy the Red Hat OpenStack Platform (RHOSP) resources used by pods, services, namespaces, and network policies.
Increase the quotas for a project by running the following command:
$ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>
Kuryr CNI leverages the Neutron Trunks extension to plug containers into the
Red Hat OpenStack Platform (RHOSP) SDN, so you must use the trunks
extension for Kuryr to properly work.
In addition, if you leverage the default ML2/OVS Neutron driver, the firewall
must be set to openvswitch
instead of ovs_hybrid
so that security groups are
enforced on trunk subports and Kuryr can properly handle network policies.
Kuryr SDN uses Red Hat OpenStack Platform (RHOSP)'s Octavia LBaaS to implement OKD services. Thus, you must install and configure Octavia components in RHOSP to use Kuryr SDN.
To enable Octavia, you must include the Octavia service during the installation of the RHOSP Overcloud, or upgrade the Octavia service if the Overcloud already exists. The following steps for enabling Octavia apply to both a clean install of the Overcloud or an Overcloud update.
The following steps only capture the key pieces required during the deployment of RHOSP when dealing with Octavia. It is also important to note that registry methods vary. This example uses the local registry method. |
If you are using the local registry, create a template to upload the images to the registry. For example:
(undercloud) $ openstack overcloud container image prepare \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--push-destination=<local-ip-from-undercloud.conf>:8787 \
--prefix=openstack- \
--tag-from-label {version}-{product-version} \
--output-env-file=/home/stack/templates/overcloud_images.yaml \
--output-images-file /home/stack/local_registry_images.yaml
Verify that the local_registry_images.yaml
file contains the Octavia images.
For example:
...
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
push_destination: <local-ip-from-undercloud.conf>:8787
The Octavia container versions vary depending upon the specific RHOSP release installed. |
Pull the container images from registry.redhat.io
to the Undercloud node:
(undercloud) $ sudo openstack overcloud container image upload \
--config-file /home/stack/local_registry_images.yaml \
--verbose
This may take some time depending on the speed of your network and Undercloud disk.
Since an Octavia load balancer is used to access the OKD API, you must increase their listeners' default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passing the following file to the Overcloud deploy command:
(undercloud) $ cat octavia_timeouts.yaml
parameter_defaults:
OctaviaTimeoutClientData: 1200000
OctaviaTimeoutMemberData: 1200000
This is not needed for RHOSP 13.0.13+. |
Install or update your Overcloud environment with Octavia:
$ openstack overcloud deploy --templates \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
-e octavia_timeouts.yaml
This command only includes the files associated with Octavia; it varies based on your specific installation of RHOSP. See the RHOSP documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director. |
When leveraging Kuryr SDN, the Overcloud installation requires the Neutron |
In RHOSP versions earlier than 13.0.13, add the project ID
to the octavia.conf
configuration file after you create the project.
To enforce network policies across services, like when traffic goes through the Octavia load balancer, you must ensure Octavia creates the Amphora VM security groups on the user project.
This change ensures that required load balancer security groups belong to that project, and that they can be updated to enforce services isolation.
This task is unnecessary in RHOSP version 13.0.13 or later. Octavia implements a new ACL API that restricts access to the load balancers VIP. |
Get the project ID
$ openstack project show <project>
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | |
| domain_id | default |
| enabled | True |
| id | PROJECT_ID |
| is_domain | False |
| name | *<project>* |
| parent_id | default |
| tags | [] |
+-------------+----------------------------------+
Add the project ID to octavia.conf
for the controllers.
Source the stackrc
file:
$ source stackrc # Undercloud credentials
List the Overcloud controllers:
$ openstack server list
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| ID | Name | Status | Networks
| Image | Flavor |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | controller |
│
| dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0 | ACTIVE |
ctlplane=192.168.24.6 | overcloud-full | compute |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
SSH into the controller(s).
$ ssh heat-admin@192.168.24.8
Edit the octavia.conf
file to add the project into the list of projects where
Amphora security groups are on the user’s account.
# List of project IDs that are allowed to have Load balancer security groups # belonging to them. amp_secgroup_allowed_projects = PROJECT_ID
Restart the Octavia worker so the new configuration loads.
controller-0$ sudo docker restart octavia_worker
Depending on your RHOSP environment, Octavia might not support UDP listeners. If you use Kuryr SDN on RHOSP version 13.0.13 or earlier, UDP services are not supported. RHOSP version 16 or later support UDP. |
Octavia supports multiple provider drivers through the Octavia API.
To see all available Octavia provider drivers, on a command line, enter:
$ openstack loadbalancer provider list
+---------+-------------------------------------------------+
| name  | description                   |
+---------+-------------------------------------------------+
| amphora | The Octavia Amphora driver. Â Â Â Â Â Â Â Â Â Â |
| octavia | Deprecated alias of the Octavia Amphora driver. |
| ovn   | Octavia OVN driver.               |
+---------+-------------------------------------------------+
Beginning with RHOSP version 16, the Octavia OVN provider driver (ovn
) is supported on
OKD on RHOSP deployments.
ovn
is an integration driver for the load balancing
that Octavia and OVN provide. It supports basic load balancing capabilities,
and is based on OpenFlow rules. The driver is automatically enabled
in Octavia by Director on deployments that use OVN Neutron ML2.
The Amphora provider driver is the default driver. If ovn
is enabled, however, Kuryr uses it.
If Kuryr uses ovn
instead of Amphora, it offers the following benefits:
Decreased resource requirements. Kuryr does not require a load balancer VM for each service.
Reduced network latency.
Increased service creation speed by using OpenFlow rules instead of a VM for each service.
Distributed load balancing actions across all nodes instead of centralized on Amphora VMs.
You can configure your cluster to use the Octavia OVN driver after your RHOSP cloud is upgraded from version 13 to version 16.
Using OKD with Kuryr SDN has several known limitations.
Using OKD with Kuryr SDN has several limitations that apply to all versions and environments:
Service
objects with the NodePort
type are not supported.
Clusters that use the OVN Octavia provider driver support Service
objects for which the .spec.selector
property is unspecified only if the .subsets.addresses
property of the Endpoints
object includes the subnet of the nodes or pods.
If the subnet on which machines are created is not connected to a router, or if the subnet is connected, but the router has no external gateway set, Kuryr cannot create floating IPs for Service
objects with type LoadBalancer
.
Configuring the sessionAffinity=ClientIP
property on Service
objects does not have an effect. Kuryr does not support this setting.
Using OKD with Kuryr SDN has several limitations that depend on the RHOSP version.
RHOSP versions before 16 use the default Octavia load balancer driver (Amphora). This driver requires that one Amphora load balancer VM is deployed per OKD service. Creating too many services can cause you to run out of resources.
Deployments of later versions of RHOSP that have the OVN Octavia driver disabled also use the Amphora driver. They are subject to the same resource concerns as earlier versions of RHOSP.
Octavia RHOSP versions before 13.0.13 do not support UDP listeners. Therefore, OKD UDP services are not supported.
Octavia RHOSP versions before 13.0.13 cannot listen to multiple protocols on the same port. Services that expose the same port to different protocols, like TCP and UDP, are not supported.
Kuryr SDN does not support automatic unidling by a service.
There are limitations when using Kuryr SDN that depend on your deployment environment.
Because of Octavia’s lack of support for the UDP protocol and multiple listeners, if the RHOSP version is earlier than 13.0.13, Kuryr forces pods to use TCP for DNS resolution.
In Go versions 1.12 and earlier, applications that are compiled with CGO support disabled use UDP only. In this case,
the native Go resolver does not recognize the use-vc
option in resolv.conf
, which controls whether TCP is forced for DNS resolution.
As a result, UDP is still used for DNS resolution, which fails.
To ensure that TCP forcing is allowed, compile applications either with the environment variable CGO_ENABLED
set to 1
, i.e. CGO_ENABLED=1
, or ensure that the variable is absent.
In Go versions 1.13 and later, TCP is used automatically if DNS resolution using UDP fails.
musl-based containers, including Alpine-based containers, do not support the |
As a result of the RHOSP upgrade process, the Octavia API might be changed, and upgrades to the Amphora images that are used for load balancers might be required.
You can address API changes on an individual basis.
If the Amphora image is upgraded, the RHOSP operator can handle existing load balancer VMs in two ways:
Upgrade each VM by triggering a load balancer failover.
Leave responsibility for upgrading the VMs to users.
If the operator takes the first option, there might be short downtimes during failovers.
If the operator takes the second option, the existing load balancers will not support upgraded Octavia API features, like UDP listeners. In this case, users must recreate their Services to use these features.
If OKD detects a new Octavia version that supports UDP load balancing, it recreates the DNS service automatically. The service recreation ensures that the service default supports UDP load balancing. The recreation causes the DNS service approximately one minute of downtime. |
By default, the OKD installation process creates three control plane machines.
Each machine requires:
An instance from the RHOSP quota
A port from the RHOSP quota
A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
By default, the OKD installation process creates three compute machines.
Each machine requires:
An instance from the RHOSP quota
A port from the RHOSP quota
A flavor with at least 8 GB memory, 2 vCPUs, and 100 GB storage space
Compute machines host the applications that you run on OKD; aim to run as many as you can. |
During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
The bootstrap machine requires:
An instance from the RHOSP quota
A port from the RHOSP quota
A flavor with at least 16 GB memory, 4 vCPUs, and 100 GB storage space
Swift is operated by a user account with the swiftoperator
role. Add the role to an account before you run the installation program.
If the Red Hat OpenStack Platform (RHOSP) object storage service, commonly known as Swift, is available, OKD uses it as the image registry storage. If it is unavailable, the installation program relies on the RHOSP block storage service, commonly known as Cinder. If Swift is present and you want to use it, you must enable access to it. If it is not present, or if you do not want to use it, skip this section. |
You have a RHOSP administrator account on the target environment.
The Swift service is installed.
On Ceph RGW, the account in url
option is enabled.
To enable Swift on RHOSP:
As an administrator in the RHOSP CLI, add the swiftoperator
role to the account that will access Swift:
$ openstack role add --user <user> --project <project> swiftoperator
Your RHOSP deployment can now use Swift for the image registry.
The OKD installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
Using the RHOSP CLI, verify the name and ID of the 'External' network:
$ openstack network list --long -c ID -c Name -c "Router Type"
+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+
A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
If the external network’s CIDR range overlaps one of the default network ranges, you must change the matching network ranges in the The default network ranges are:
|
If the installation program finds multiple networks with the same name, it sets one of them at random. To avoid this behavior, create unique names for resources in RHOSP. |
If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port. |
The OKD installation program relies on a file that is called clouds.yaml
. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
Create the clouds.yaml
file:
If your RHOSP distribution includes the Horizon web UI, generate a clouds.yaml
file in it.
Remember to add a password to the |
If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about clouds.yaml
, see Config files in the RHOSP documentation.
clouds:
shiftstack:
auth:
auth_url: http://10.10.14.42:5000/v3
project_name: shiftstack
username: shiftstack_user
password: XXX
user_domain_name: Default
project_domain_name: Default
dev-env:
region_name: RegionOne
auth:
username: 'devuser'
password: XXX
project_name: 'devonly'
auth_url: 'https://10.10.14.22:5001/v2.0'
If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
Copy the certificate authority file to your machine.
Add the cacerts
key to the clouds.yaml
file. The value must be an absolute, non-root-accessible path to the CA certificate:
clouds:
shiftstack:
...
cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the
|
Place the clouds.yaml
file in one of the following locations:
The value of the OS_CLIENT_CONFIG_FILE
environment variable
The current directory
A Unix-specific user configuration directory, for example ~/.config/openstack/clouds.yaml
A Unix-specific site configuration directory, for example /etc/openstack/clouds.yaml
The installation program searches for clouds.yaml
in that order.
Before you install OKD, download the installation file on a local computer.
You have a computer that runs Linux or macOS, with 500 MB of local disk space
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster. |
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider. |
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.
If you do not use the pull secret from the Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
You can customize the OKD cluster you install on Red Hat OpenStack Platform (RHOSP).
Obtain the OKD installation program and the pull secret for your cluster.
Obtain service principal permissions at the subscription level.
Create the install-config.yaml
file.
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
Select openstack as the platform to target.
Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
Specify the floating IP address to use for external access to the OpenShift API.
Specify a RHOSP flavor with at least 16 GB RAM to use for control plane nodes and 8 GB RAM for compute nodes.
Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
Enter a name for your cluster. The name must be 14 or fewer characters long.
Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.
Modify the install-config.yaml
file. You can find more information about
the available parameters in the "Installation configuration parameters" section.
Back up the install-config.yaml
file so that you can use
it to install multiple clusters.
The |
Production environments can deny direct access to the Internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OKD
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
You have an existing install-config.yaml
file.
You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
...
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. |
3 | A comma-separated list of destination domain names, IP addresses, or
other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com , but not y.com . Use * to bypass the proxy for all destinations. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace to hold the additional CA
certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter
with the FCOS trust bundle. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the FCOS trust
bundle. |
The installation program does not support the proxy |
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the |
The |
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the |
String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource |
Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: |
Object |
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values | ||
---|---|---|---|---|
|
The configuration for the cluster network. |
Object
|
||
|
The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
||
|
The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation.
The prefix length for an IPv4 block is between |
||
|
The subnet prefix length to assign to each individual node. For example, if |
A subnet prefix. The default value is |
||
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. |
An array with an IP address block in CIDR format. For example:
|
||
|
The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use |
An IP network block in CIDR notation. For example,
|
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
|
A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. |
String |
||
|
The configuration for the machines that comprise the compute nodes. |
Array of |
||
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are |
String |
||
|
Whether to enable or disable simultaneous multithreading, or
|
|
||
|
Required if you use |
|
||
|
Required if you use |
|
||
|
The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
||
|
The configuration for the machines that comprise the control plane. |
Array of |
||
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are |
String |
||
|
Whether to enable or disable simultaneous multithreading, or
|
|
||
|
Required if you use |
|
||
|
Required if you use |
|
||
|
The number of control plane machines to provision. |
The only supported value is |
||
|
The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
|
|
||
|
Sources and repositories for the release-image content. |
Array of objects. Includes a |
||
|
Required if you use |
String |
||
|
Specify one or more repositories that may also contain the same images. |
Array of strings |
||
|
How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to
|
||
|
The SSH key or keys to authenticate access your cluster machines.
|
One or more keys. For example:
|
Additional RHOSP configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage. |
Integer, for example |
|
For compute machines, the root volume’s type. |
String, for example |
|
For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage. |
Integer, for example |
|
For control plane machines, the root volume’s type. |
String, for example |
|
The name of the RHOSP cloud to use from the list of clouds in the
|
String, for example |
|
The RHOSP external network name to be used for installation. |
String, for example |
|
The RHOSP flavor to use for control plane and compute machines. This property is deprecated. To use a flavor as the default for all machine pools, add it as the value of the |
String, for example |
Optional RHOSP configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks. |
A list of one or more UUIDs as strings. For example, |
|
Additional security groups that are associated with compute machines. |
A list of one or more UUIDs as strings. For example, |
|
RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured. On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property. |
A list of strings. For example, |
|
Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks. |
A list of one or more UUIDs as strings. For example, |
|
Additional security groups that are associated with control plane machines. |
A list of one or more UUIDs as strings. For example, |
|
RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured. On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property. |
A list of strings. For example, |
|
The location from which the installer downloads the FCOS image. You must set this parameter to perform an installation in a restricted network. |
An HTTP or HTTPS URL, optionally with an SHA-256 checksum. For example, |
|
Properties to add to the installer-uploaded ClusterOSImage in Glance. This property is ignored if You can use this property to exceed the default persistent volume (PV) limit for RHOSP of 26 PVs per node. To exceed the limit, set the You can also use this property to enable the QEMU guest agent by including the |
A list of key-value string pairs. For example, |
|
The default machine pool platform configuration. |
|
|
An existing floating IP address to associate with the Ingress port. To use this property, you must also define the |
An IP address, for example |
|
An existing floating IP address to associate with the API load balancer. To use this property, you must also define the |
An IP address, for example |
|
IP addresses for external DNS servers that cluster instances use for DNS resolution. |
A list of IP addresses as strings. For example, |
|
The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet. The first item in If you deploy to a custom subnet, you cannot specify an external DNS server to the OKD installer. Instead, add DNS to the subnet in RHOSP. |
A UUID as a string. For example, |
Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet
in the install-config.yaml
file.
This subnet is used as the cluster’s primary subnet. By default, nodes and ports are created on it. You can create nodes and ports on a different RHOSP subnet by setting the value of the platform.openstack.machinesSubnet
property to the subnet’s UUID.
Before you run the OKD installer with a custom subnet, verify that your configuration meets the following requirements:
The subnet that is used by platform.openstack.machinesSubnet
has DHCP enabled.
The CIDR of platform.openstack.machinesSubnet
matches the CIDR of networking.machineNetwork
.
The installation program user has permission to create ports on this network, including ports with fixed IP addresses.
Clusters that use custom subnets have the following limitations:
If you plan to install a cluster that uses floating IP addresses, the platform.openstack.machinesSubnet
subnet must be attached to a router that is connected to the externalNetwork
network.
If the platform.openstack.machinesSubnet
value is set in the install-config.yaml
file, the installation program does not create a private network or subnet for your RHOSP machines.
You cannot use the platform.openstack.externalDNS
property at the same time as a custom subnet. To add DNS to a cluster that uses a custom subnet, configure DNS on the RHOSP network.
By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values,
set values for |
install-config.yaml
file for RHOSP with KuryrTo deploy with Kuryr SDN instead of the default OpenShift SDN, you must
modify the install-config.yaml
file to include Kuryr
as the desired
networking.networkType
and proceed with the default OKD SDN installation steps.
This sample install-config.yaml
demonstrates all of the possible
Red Hat OpenStack Platform (RHOSP) customization options.
This sample file is provided for reference only. You must obtain your
|
apiVersion: v1
baseDomain: example.com
controlPlane:
name: master
platform: {}
replicas: 3
compute:
- name: worker
platform:
openstack:
type: ml.large
replicas: 3
metadata:
name: example
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
serviceNetwork:
- 172.30.0.0/16 (1)
networkType: Kuryr
platform:
openstack:
cloud: mycloud
externalNetwork: external
computeFlavor: m1.xlarge
apiFloatingIP: 128.0.0.1
trunkSupport: true (2)
octaviaSupport: true (2)
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
1 | The Amphora Octavia driver creates two ports per load balancer. As a
result, the service subnet that the installer creates is twice the size of the
CIDR that is specified as the value of the serviceNetwork property. The larger range is
required to prevent IP address conflicts. |
2 | Both trunkSupport and octaviaSupport are automatically discovered by the
installer, so there is no need to set them. But if your environment does not
meet both requirements, Kuryr SDN will not properly work. Trunks are needed
to connect the pods to the RHOSP network and Octavia is required to create the
OKD services. |
A Kuryr ports pool maintains a number of ports on standby for pod creation.
Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.
The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OKD cluster nodes.
Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.
Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml
manifest file to configure ports pool behavior:
The enablePortPoolsPrepopulation
parameter controls pool prepopulation, which forces Kuryr to add ports to the pool when it is created, such as when a new host is added, or a new namespace is created. The default value is false
.
The poolMinPorts
parameter is the minimum number of free ports that are kept in the pool. The default value is 1
.
The poolMaxPorts
parameter is the maximum number of free ports that are kept in the pool. A value of 0
disables that upper bound. This is the default setting.
If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.
The poolBatchPorts
parameter defines the maximum number of Neutron ports that can be created at once. The default value is 3
.
During installation, you can configure how Kuryr manages Red Hat OpenStack Platform (RHOSP) Neutron ports to control the speed and efficiency of pod creation.
Create and modify the install-config.yaml
file.
From a command line, create the manifest files:
$ ./openshift-install create manifests --dir <installation_directory> (1)
1 | For <installation_directory> , specify the name of the directory that
contains the install-config.yaml file for your cluster. |
Create a file that is named cluster-network-03-config.yml
in the
<installation_directory>/manifests/
directory:
$ touch <installation_directory>/manifests/cluster-network-03-config.yml (1)
1 | For <installation_directory> , specify the directory name that contains the
manifests/ directory for your cluster. |
After creating the file, several network configuration files are in the
manifests/
directory, as shown:
$ ls <installation_directory>/manifests/cluster-network-*
cluster-network-01-crd.yml
cluster-network-02-config.yml
cluster-network-03-config.yml
Open the cluster-network-03-config.yml
file in an editor, and enter a custom resource (CR) that describes the Cluster Network Operator configuration that you want:
$ oc edit networks.operator.openshift.io cluster
Edit the settings to meet your requirements. The following file is provided as an example:
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
defaultNetwork:
type: Kuryr
kuryrConfig:
enablePortPoolsPrepopulation: false (1)
poolMinPorts: 1 (2)
poolBatchPorts: 3 (3)
poolMaxPorts: 5 (4)
openstackServiceNetwork: 172.30.0.0/15 (5)
1 | Set the value of enablePortPoolsPrepopulation to true to make Kuryr create new Neutron ports after a namespace is created or a new node is added to the cluster. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value is false . |
2 | Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts . The default value is 1 . |
3 | poolBatchPorts controls the number of new ports that are created if the number of free ports is lower than the value of poolMinPorts . The default value is 3 . |
4 | If the number of free ports in a pool is higher than the value of poolMaxPorts , Kuryr deletes them until the number matches that value. Setting this value to 0 disables this upper bound, preventing pools from shrinking. The default value is 0 . |
5 | The openStackServiceNetwork parameter defines the CIDR range of the network from which IP addresses are allocated to RHOSP Octavia’s LoadBalancers. |
If this parameter is used with the Amphora driver, Octavia takes two IP addresses from this network for each load balancer: one for OpenShift and the other for VRRP connections. Because these IP addresses are managed by OKD and Neutron respectively, they must come from different pools.
Therefore, the value of openStackServiceNetwork
must be at least twice the size of the value of serviceNetwork
, and the value of serviceNetwork
must overlap entirely with the range that is defined by openStackServiceNetwork
.
The CNO verifies that VRRP IP addresses that are taken from the range that is defined by this parameter do not overlap with the range that is defined by the serviceNetwork
parameter.
If this parameter is not set, the CNO uses an expanded value of serviceNetwork
that is determined by decrementing the prefix size by 1.
Save the cluster-network-03-config.yml
file, and exit the text editor.
Optional: Back up the manifests/cluster-network-03-config.yml
file. The installation program deletes the manifests/
directory while creating the cluster.
Optionally, you can set the affinity policy for compute machines during installation. The installer does not select an affinity policy for compute machines by default.
You can also create machine sets that use particular RHOSP server groups after installation.
Control plane machines are created with a |
You can learn more about RHOSP instance scheduling and placement in the RHOSP documentation. |
Create the install-config.yaml
file and complete any modifications to it.
Using the RHOSP command-line interface, create a server group for your compute machines. For example:
$ openstack \
--os-compute-api-version=2.15 \
server group create \
--policy anti-affinity \
my-openshift-worker-group
For more information, see the server group create
command documentation.
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir=<installation_directory>
where:
installation_directory
Specifies the name of the directory that contains the install-config.yaml
file for your cluster.
Open manifests/99_openshift-cluster-api_worker-machineset-0.yaml
, the MachineSet
definition file.
Add the property serverGroupID
to the definition beneath the spec.template.spec.providerSpec.value
property. For example:
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machine-role: <node_role>
machine.openshift.io/cluster-api-machine-type: <node_role>
name: <infrastructure_ID>-<node_role>
namespace: openshift-machine-api
spec:
replicas: <number_of_replicas>
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machine-role: <node_role>
machine.openshift.io/cluster-api-machine-type: <node_role>
machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
spec:
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/v1alpha1
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api
flavor: <nova_flavor>
image: <glance_image_name_or_location>
serverGroupID: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee (1)
kind: OpenstackProviderSpec
networks:
- filter: {}
subnets:
- filter:
name: <subnet_name>
tags: openshiftClusterID=<infrastructure_ID>
securityGroups:
- filter: {}
name: <infrastructure_ID>-<node_role>
serverMetadata:
Name: <infrastructure_ID>-<node_role>
openshiftClusterID: <infrastructure_ID>
tags:
- openshiftClusterID=<infrastructure_ID>
trunk: true
userDataSecret:
name: <node_role>-user-data
availabilityZone: <optional_openstack_availability_zone>
1 | Add the UUID of your server group here. |
Optional: Back up the manifests/99_openshift-cluster-api_worker-machineset-0.yaml
file. The installation program deletes the manifests/
directory when creating the cluster.
When you install the cluster, the installer uses the MachineSet
definition that you modified to create compute machines within your RHOSP server group.
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging. |
You can use this key to SSH into the master nodes as the user core
. When you
deploy the cluster, the key is added to the core
user’s
~/.ssh/authorized_keys
list.
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \
-f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_rsa , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
Running this command generates an SSH key that does not require a password in the location that you specified.
If you plan to install an OKD cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the |
Start the ssh-agent
process as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA. |
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa |
When you install OKD, provide the SSH public key to the installation program.
At deployment, all OKD machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
You can configure OKD API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
Create floating IP (FIP) addresses for external access to the OKD API and cluster applications.
Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>
Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>
Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
If you do not control the DNS server, you can access the cluster by adding the cluster domain names such as the following to your
The cluster domain names in the |
Add the FIPs to the
install-config.yaml
file as the values of the following
parameters:
platform.openstack.ingressFloatingIP
platform.openstack.apiFloatingIP
If you use these values, you must also enter an external network as the value of the
platform.openstack.externalNetwork
parameter in the install-config.yaml
file.
You can make OKD resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration. |
You can install OKD on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
In the
install-config.yaml
file, do not define the following
parameters:
platform.openstack.ingressFloatingIP
platform.openstack.apiFloatingIP
If you cannot provide an external network, you can also leave platform.openstack.externalNetwork
blank. If you do not provide a value for platform.openstack.externalNetwork
, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. You must configure external connectivity on your own.
If you run the installer from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
If you do not control the DNS server, you can add the record to your |
You can install OKD on a compatible cloud platform.
You can run the |
Obtain the OKD installation program and the pull secret for your cluster.
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed. |
When the cluster deployment completes, directions for accessing your cluster,
including a link to its web console and credentials for the kubeadmin
user,
display in your terminal.
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s
The cluster access and credential information also outputs to |
|
You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
You can verify your OKD cluster’s status during or after installation.
In the cluster environment, export the administrator’s kubeconfig file:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored the installation files in. |
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
View the control plane and compute machines created after a deployment:
$ oc get nodes
View your cluster’s version:
$ oc get clusterversion
View your Operators' status:
$ oc get clusteroperator
View all running pods in the cluster:
$ oc get pods -A
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
See Accessing the web console for more details about accessing and understanding the OKD web console.
See About remote health monitoring for more information about the Telemetry service
If necessary, you can opt out of remote health reporting.
If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.