This is a cache of https://docs.okd.io/latest/etcd/etcd-performance.html. It is a snapshot of the page at 2025-10-11T18:55:18.801+0000.
Ensuring reliable etcd performance and scalability | etcd | OKD 4
×

Leader election and log replication of etcd

etcd is a consistent, distributed key-value store that operates as a cluster of replicated nodes. Following the Raft algorithm, etcd operates by electing one node as the leader and the others as followers. The leader maintains the system’s current state and ensures that the followers are up-to-date.

The leader node is responsible for log replication. It handles incoming write transactions from the client and writes a Raft log entry that it then broadcasts to the followers.

When an etcd client such as kube-apiserver connects to an etcd member that is requesting an action that requires a quorum, such as writing a value, if the etcd member is a follower, it returns a message indicating the transaction should be sent to the leader.

When the etcd client requests an action that requires a quorum from the leader, the leader keeps the client connection open while it writes the local Raft log, broadcasts the log to the followers, and waits for the majority of the followers to acknowledge to have committed the log without failures. Only then does the leader send the acknowledgment to the etcd client and close the session. If failure notifications are received from the followers and the majority fails to reach a consensus, the leader returns the error message to the client and closes the session.

Additional resources

Node scaling for etcd

In general, clusters must have 3 control plane nodes. However, if your cluster is installed on a bare metal platform, it can have up to 5 control plane nodes. If an existing bare-metal cluster has fewer than 5 control plane nodes, you can scale the cluster up as a postinstallation task.

For example, to scale from 3 to 4 control plane nodes after installation, you can add a host and install it as a control plane node. Then, the etcd Operator scales accordingly to account for the additional control plane node.

Scaling a cluster to 4 or 5 control plane nodes is available only on bare metal platforms.

For more information about how to scale control plane nodes by using the Assisted Installer, see "Adding hosts with the API" and "Replacing a control plane node in a healthy cluster".

While adding control plane nodes can increase reliability and availability, it can decrease throughput and increase latency, affecting performance.

The following table shows failure tolerance for clusters of different sizes:

Table 1. Failure tolerances by cluster size
Cluster size Majority Failure tolerance

1 node

1

0

3 nodes

2

1

4 nodes

3

1

5 nodes

3

2

For more information about recovering from quorum loss, see "Restoring to a previous cluster state".

Effects of disk latency on etcd

An etcd cluster is sensitive to disk latencies. To understand the disk latency that is experienced by etcd in your control plane environment, run the fio tests or suite.

Make sure that the final report classifies the disk as appropriate for etcd, as shown in the following example:

...
99th percentile of fsync is 5865472 ns
99th percentile of the fsync is within the recommended threshold: - 20 ms, the disk can be used to host etcd

When a high latency disk is used, a message states that the disk is not recommended for etcd, as shown in the following example:

...
99th percentile of fsync is 15865472 ns
99th percentile of the fsync is greater than the recommended value which is 20 ms, faster disks are recommended to host etcd for better performance

When you use cluster deployments that span multiple data centers that are using disks for etcd that do not meet the recommended latency, it increases the chances of service-affecting failures and dramatically reduces the network latency that the control plane can sustain.

Monitoring consensus latency for etcd

By using the etcdctl CLI, you can monitor the latency for reaching consensus as experienced by etcd. You must identify one of the etcd pods and then retrieve the endpoint health.

This procedure, which validates and monitors cluster health, can be run only on an active cluster.

Prerequisites
  • During planning for cluster deployment, you completed the disk and network tests.

Procedure
  1. Enter the following command:

    # oc get pods -n openshift-etcd -l app=etcd
    Example output
    NAME      READY   STATUS    RESTARTS   AGE
    etcd-m0   4/4     Running   4          8h
    etcd-m1   4/4     Running   4          8h
    etcd-m2   4/4     Running   4          8h
  2. Enter the following command. To better understand the etcd latency for consensus, you can run this command on a precise watch cycle for a few minutes to observe that the numbers remain below the ~66 ms threshold. The closer the consensus time is to 100 ms, the more likely the cluster will experience service-affecting events and instability.

    # oc exec -ti etcd-m0 -- etcdctl endpoint health -w table
    Example output
    +----------------------------+--------+-------------+-------+
    |          ENDPOINT          | HEALTH |    TOOK     | ERROR |
    +----------------------------+--------+-------------+-------+
    | https://198.18.111.12:2379 |   true |  3.798349ms |       |
    | https://198.18.111.14:2379 |   true |  7.389608ms |       |
    | https://198.18.111.13:2379 |   true |  6.263117ms |       |
    +----------------------------+--------+-------------+-------+
  3. Enter the following command:

    # oc exec -ti etcd-m0 -- watch -dp -c etcdctl endpoint health -w table
    Example output
    +----------------------------+--------+-------------+-------+
    |          ENDPOINT          | HEALTH |    TOOK     | ERROR |
    +----------------------------+--------+-------------+-------+
    | https://198.18.111.12:2379 |   true |  9.533405ms |       |
    | https://198.18.111.13:2379 |   true |  4.628054ms |       |
    | https://198.18.111.14:2379 |   true |  5.803378ms |       |
    +----------------------------+--------+-------------+-------+

Moving etcd to a different disk

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for OKD 4 container storage.

This encoded script only supports device names for the following device types:

SCSI or SATA

/dev/sd*

Virtual device

/dev/vd*

NVMe

/dev/nvme*[0-9]*n*

Limitations
  • When the new disk is attached to the cluster, the etcd database is part of the root mount. It is not part of the secondary disk or the intended disk when the primary node is recreated. As a result, the primary node will not create a separate /var/lib/etcd mount.

Prerequisites
  • You have a backup of your cluster’s etcd data.

  • You have installed the OpenShift CLI (oc).

  • You have access to the cluster with cluster-admin privileges.

  • Add additional disks before uploading the machine configuration.

  • The MachineConfigPool must match metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker, or a custom pool.

This procedure does not move parts of the root file system, such as /var/, to another disk or partition on an installed node.

This procedure is not supported when using control plane machine sets.

Procedure
  1. Attach the new disk to the cluster and verify that the disk is detected in the node by running the lsblk command in a debug shell:

    $ oc debug node/<node_name>
    # lsblk

    Note the device name of the new disk reported by the lsblk command.

  2. Create the following script and name it etcd-find-secondary-device.sh:

    #!/bin/bash
    set -uo pipefail
    
    for device in <device_type_glob>; do (1)
    /usr/sbin/blkid "${device}" &> /dev/null
     if [ $? == 2  ]; then
        echo "secondary device found ${device}"
        echo "creating filesystem for etcd mount"
        mkfs.xfs -L var-lib-etcd -f "${device}" &> /dev/null
        udevadm settle
        touch /etc/var-lib-etcd-mount
        exit
     fi
    done
    echo "Couldn't find secondary block device!" >&2
    exit 77
    1 Replace <device_type_glob> with a shell glob for your block device type. For SCSI or SATA drives, use /dev/sd*; for virtual drives, use /dev/vd*; for NVMe drives, use /dev/nvme*[0-9]*n*.
  3. Create a base64-encoded string from the etcd-find-secondary-device.sh script and note its contents:

    $ base64 -w0 etcd-find-secondary-device.sh
  4. Create a MachineConfig YAML file named etcd-mc.yml with contents such as the following:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 98-var-lib-etcd
    spec:
      config:
        ignition:
          version: 3.5.0
        storage:
          files:
            - path: /etc/find-secondary-device
              mode: 0755
              contents:
                source: data:text/plain;charset=utf-8;base64,<encoded_etcd_find_secondary_device_script> (1)
        systemd:
          units:
            - name: find-secondary-device.service
              enabled: true
              contents: |
                [Unit]
                Description=Find secondary device
                DefaultDependencies=false
                After=systemd-udev-settle.service
                Before=local-fs-pre.target
                ConditionPathExists=!/etc/var-lib-etcd-mount
    
                [Service]
                RemainAfterExit=yes
                ExecStart=/etc/find-secondary-device
    
                RestartForceExitStatus=77
    
                [Install]
                WantedBy=multi-user.target
            - name: var-lib-etcd.mount
              enabled: true
              contents: |
                [Unit]
                Before=local-fs.target
    
                [Mount]
                What=/dev/disk/by-label/var-lib-etcd
                Where=/var/lib/etcd
                Type=xfs
                TimeoutSec=120s
    
                [Install]
                RequiredBy=local-fs.target
            - name: sync-var-lib-etcd-to-etcd.service
              enabled: true
              contents: |
                [Unit]
                Description=Sync etcd data if new mount is empty
                DefaultDependencies=no
                After=var-lib-etcd.mount var.mount
                Before=crio.service
    
                [Service]
                Type=oneshot
                RemainAfterExit=yes
                ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
                ExecStart=/usr/sbin/setsebool -P rsync_full_access 1
                ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
                ExecStart=/usr/sbin/semanage fcontext -a -t container_var_lib_t '/var/lib/etcd(/.*)?'
                ExecStart=/usr/sbin/setsebool -P rsync_full_access 0
                TimeoutSec=0
    
                [Install]
                WantedBy=multi-user.target graphical.target
            - name: restorecon-var-lib-etcd.service
              enabled: true
              contents: |
                [Unit]
                Description=Restore recursive SELinux security contexts
                DefaultDependencies=no
                After=var-lib-etcd.mount
                Before=crio.service
    
                [Service]
                Type=oneshot
                RemainAfterExit=yes
                ExecStart=/sbin/restorecon -R /var/lib/etcd/
                TimeoutSec=0
    
                [Install]
                WantedBy=multi-user.target graphical.target
    1 Replace <encoded_etcd_find_secondary_device_script> with the encoded script contents that you noted.
  5. Apply the created MachineConfig YAML file:

    $ oc create -f etcd-mc.yml
Verification steps
  • Run the grep /var/lib/etcd /proc/mounts command in a debug shell for the node to ensure that the disk is mounted:

    $ oc debug node/<node_name>
    # grep -w "/var/lib/etcd" /proc/mounts
    Example output
    /dev/sdb /var/lib/etcd xfs rw,seclabel,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota 0 0

Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and deletes.

Monitor these key metrics:

  • etcd_server_quota_backend_bytes, which is the current quota limit

  • etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a history compaction

  • etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end database. This fragmented space is available for use by etcd, but is not available to the host file system. You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

Automatic defragmentation is good for most cases, because the etcd operator uses cluster information to determine the most efficient operation for the user.

Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

  • etcd logs

  • cluster-etcd-operator pod

  • operator status error log

Automatic defragmentation can cause leader election failure in various OpenShift core components, such as the Kubernetes controller manager, which triggers a restart of the failing component. The restart is harmless and either triggers failover to the next running instance or the component resumes work again after the restart.

Example log output for successful defragmentation
etcd member has been defragmented: <member_name>, memberID: <member_id>
Example log output for unsuccessful defragmentation
failed defrag on member: <member_name>, memberID: <member_id>: <error_message>

Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in two cases:

  • When etcd uses more than 50% of its available space for more than 10 minutes

  • When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB that will be freed by defragmentation with the PromQL expression: (etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

Defragmenting etcd is a blocking action. The etcd member will not respond until defragmentation is complete. For this reason, wait at least one minute between defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites
  • You have access to the cluster as a user with the cluster-admin role.

Procedure
  1. Determine which etcd member is the leader, because the leader should be defragmented last.

    1. Get the list of etcd pods:

      $ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide
      Example output
      etcd-ip-10-0-159-225.example.redhat.com                3/3     Running     0          175m   10.0.159.225   ip-10-0-159-225.example.redhat.com   <none>           <none>
      etcd-ip-10-0-191-37.example.redhat.com                 3/3     Running     0          173m   10.0.191.37    ip-10-0-191-37.example.redhat.com    <none>           <none>
      etcd-ip-10-0-199-170.example.redhat.com                3/3     Running     0          176m   10.0.199.170   ip-10-0-199-170.example.redhat.com   <none>           <none>
    2. Choose a pod and run the following command to determine which etcd member is the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint status --cluster -w table
      Example output
      Defaulting container name to etcdctl.
      Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see all of the containers in this pod.
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.5.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.5.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.5.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is the leader. Matching this endpoint with the output of the previous step, the pod name of the leader is etcd-ip-10-0-199-170.example.redhat.com.

  2. Defragment an etcd member.

    1. Connect to the running etcd container, passing in the name of a pod that is not the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com
    2. Unset the ETCDCTL_ENDPOINTS environment variable:

      sh-4.4# unset ETCDCTL_ENDPOINTS
    3. Defragment the etcd member:

      sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag
      Example output
      Finished defragmenting etcd member[https://localhost:2379]

      If a timeout error occurs, increase the value for --command-timeout until the command succeeds.

    4. Verify that the database size was reduced:

      sh-4.4# etcdctl endpoint status -w table --cluster
      Example output
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.5.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.5.9 |   41 MB |     false |      false |         7 |      91624 |              91624 |        | (1)
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.5.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      This example shows that the database size for this etcd member is now 41 MB as opposed to the starting size of 104 MB.

    5. Repeat these steps to connect to each of the other etcd members and defragment them. Always defragment the leader last.

      Wait at least one minute between defragmentation actions to allow the etcd pod to recover. Until the etcd pod recovers, the etcd member will not respond.

  3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

    1. Check if there are any NOSPACE alarms:

      sh-4.4# etcdctl alarm list
      Example output
      memberID:12345678912345678912 alarm:NOSPACE
    2. Clear the alarms:

      sh-4.4# etcdctl alarm disarm

Setting tuning parameters for etcd

You can set the control plane hardware speed to "Standard", "Slower", or the default, which is "".

The default setting allows the system to decide which speed to use. This value enables upgrades from versions where this feature does not exist, as the system can select values from previous versions.

By selecting one of the other values, you are overriding the default. If you see many leader elections due to timeouts or missed heartbeats and your system is set to "" or "Standard", set the hardware speed to "Slower" to make the system more tolerant to the increased latency.

Changing hardware speed tolerance

To change the hardware speed tolerance for etcd, complete the following steps.

Procedure
  1. Check to see what the current value is by entering the following command:

    $ oc describe etcd/cluster | grep "Control Plane Hardware Speed"
    Example output
    Control Plane Hardware Speed:  <VALUE>

    If the output is empty, the field has not been set and should be considered as the default ("").

  2. Change the value by entering the following command. Replace <value> with one of the valid values: "", "Standard", or "Slower":

    $ oc patch etcd/cluster --type=merge -p '{"spec": {"controlPlaneHardwareSpeed": "<value>"}}'

    The following table indicates the heartbeat interval and leader election timeout for each profile. These values are subject to change.

    Profile

    ETCD_HEARTBEAT_INTERVAL

    ETCD_LEADER_ELECTION_TIMEOUT

    ""

    Varies depending on platform

    Varies depending on platform

    Standard

    100

    1000

    Slower

    500

    2500

  3. Review the output:

    Example output
    etcd.operator.openshift.io/cluster patched

    If you enter any value besides the valid values, error output is displayed. For example, if you entered "Faster" as the value, the output is as follows:

    Example output
    The Etcd "cluster" is invalid: spec.controlPlaneHardwareSpeed: Unsupported value: "Faster": supported values: "", "Standard", "Slower"
  4. Verify that the value was changed by entering the following command:

    $ oc describe etcd/cluster | grep "Control Plane Hardware Speed"
    Example output
    Control Plane Hardware Speed:  ""
  5. Wait for etcd pods to roll out:

    $ oc get pods -n openshift-etcd -w

    The following output shows the expected entries for master-0. Before you continue, wait until all masters show a status of 4/4 Running.

    Example output
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     Pending             0          0s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     Pending             0          0s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     ContainerCreating   0          0s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     ContainerCreating   0          1s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           1/1     Running             0          2s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     Completed           0          34s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     Completed           0          36s
    installer-9-ci-ln-qkgs94t-72292-9clnd-master-0           0/1     Completed           0          36s
    etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0            0/1     Running             0          26m
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  4/4     Terminating         0          11m
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  4/4     Terminating         0          11m
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  0/4     Pending             0          0s
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  0/4     Init:1/3            0          1s
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  0/4     Init:2/3            0          2s
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  0/4     PodInitializing     0          3s
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  3/4     Running             0          4s
    etcd-guard-ci-ln-qkgs94t-72292-9clnd-master-0            1/1     Running             0          26m
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  3/4     Running             0          20s
    etcd-ci-ln-qkgs94t-72292-9clnd-master-0                  4/4     Running             0          20s
  6. Enter the following command to review to the values:

    $ oc describe -n openshift-etcd pod/<ETCD_PODNAME> | grep -e HEARTBEAT_INTERVAL -e ELECTION_TIMEOUT

    These values might not have changed from the default.

Additional resources

OKD timer tunables for etcd

OKD maintains etcd timers that are optimized for each platform. OKD has prescribed validated values that are optimized for each platform provider. The default etcd timers with platform=none or platform=metal are as follows:

- name: ETCD_ELECTION_TIMEOUT
  value: "1000"
  ...
- name: ETCD_HEARTBEAT_INTERVAL
  value: "100"

From an etcd perspective, the two key values are election timeout and heartbeat interval:

Heartbeat interval

The frequency with which the leader notifies followers that it is still the leader.

Election timeout

This timeout is how long a follower node will go without hearing a heartbeat before it attempts to become leader itself.

These values do not provide the whole story for the control plane or even etcd. An etcd cluster is sensitive to disk latencies. Because etcd must persist proposals to its log, disk activity from other processes might cause long fsync latencies. The consequence is that etcd might miss heartbeats, causing request timeouts and temporary leader loss. During a leader loss and reelection, the Kubernetes API cannot process any request that causes a service-affecting event and instability of the cluster.

Determining the size of the etcd database and understanding its effects

The size of the etcd database has a direct impact on the time to complete the etcd defragmentation process. OKD automatically runs the etcd defragmentation on one etcd member at a time when it detects at least 45% fragmentation. During the defragmentation process, the etcd member cannot process any requests. On small etcd databases, the defragmentation process happens in less than a second. With larger etcd databases, the disk latency directly impacts the fragmentation time, causing additional latency, as operations are blocked while defragmentation happens.

The size of the etcd database is a factor to consider when network partitions isolate a control plane node for a period and the control plane needs to resync after communication is re-established.

Minimal options exist for controlling the size of the etcd database, as it depends on the operators and applications in the system. When you consider the latency range under which the system will operate, account for the effects of synchronization or defragmentation per size of the etcd database.

The magnitude of the effects is specific to the deployment. The time to complete a defragmentation will cause degradation in the transaction rate, as the etcd member cannot accept updates during the defragmentation process. Similarly, the time for the etcd re-synchronization for large databases with high change rate affects the transaction rate and transaction latency on the system.

Consider the following two examples for the type of impacts to plan for.

Example of the effect of etcd defragementation based on database size

Writing an etcd database of 1 GB to a slow 7200 RPMs disk at 80 Mbit/s takes about 1 minute and 40 seconds. In such a scenario, the defragmentation process takes at least this long, if not longer, to complete the defragmentation.

Example of the effect of database size on etcd synchronization

If there is a change of 10% of the etcd database during the disconnection of one of the control plane nodes, the resync needs to transfer at least 100 MB. Transferring 100 MB over a 1 Gbps link takes 800 ms. On clusters with regular transactions with the Kubernetes API, the larger the etcd database size, the more network instabilities will cause control plane instabilities.

You can determine the size of an etcd database by using the OKD console or by running commands in the etcdctl tool.

Procedure
  • To find the database size in the OKD console, go to the etcd dashboard to view a plot that reports the size of the etcd database.

  • To find the database size by using the etcdctl tool, you can enter two commands:

    1. Enter the following command to list the pods:

      # oc get pods -n openshift-etcd -l app=etcd
      Example output
      NAME      READY   STATUS    RESTARTS   AGE
      etcd-m0   4/4     Running   4          22h
      etcd-m1   4/4     Running   4          22h
      etcd-m2   4/4     Running   4          22h
    2. Enter the following command and view the database size in the output:

      # oc exec -t etcd-m0 -- etcdctl endpoint status -w simple | cut -d, -f 1,3,4
      Example output
      https://198.18.111.12:2379, 3.5.6, 1.1 GB
      https://198.18.111.13:2379, 3.5.6, 1.1 GB
      https://198.18.111.14:2379, 3.5.6, 1.1 GB

Increasing the database size for etcd

You can set the disk quota in gibibytes (GiB) for each etcd instance. If you set a disk quota for your etcd instance, you can specify integer values from 8 to 32. The default value is 8. You can specify only increasing values.

You might want to increase the disk quota if you encounter a low space alert. This alert indicates that the cluster is too large to fit in etcd despite automatic compaction and defragmentation. If you see this alert, you need to increase the disk quota immediately because after etcd runs out of space, writes fail.

Another scenario where you might want to increase the disk quota is if you encounter an excessive database growth alert. This alert is a warning that the database might grow too large in the next four hours. In this scenario, consider increasing the disk quota so that you do not eventually encounter a low space alert and possible write fails.

If you increase the disk quota, the disk space that you specify is not immediately reserved. Instead, etcd can grow to that size if needed. Ensure that etcd is running on a dedicated disk that is larger than the value that you specify for the disk quota.

For large etcd databases, the control plane nodes must have additional memory and storage. Because you must account for the API server cache, the minimum memory required is at least three times the configured size of the etcd database.

Increasing the database size for etcd is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Changing the etcd database size

To change the database size for etcd, complete the following steps.

Procedure
  1. Check the current value of the disk quota for each etcd instance by entering the following command:

    $ oc describe etcd/cluster | grep "Backend Quota"
    Example output
    Backend Quota Gi B: <value>
  2. Change the value of the disk quota by entering the following command:

    $ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": <value>}}'
    Example output
    etcd.operator.openshift.io/cluster patched
Verification
  1. Verify that the new value for the disk quota is set by entering the following command:

    $ oc describe etcd/cluster | grep "Backend Quota"

    The etcd Operator automatically rolls out the etcd instances with the new values.

  2. Verify that the etcd pods are up and running by entering the following command:

    $ oc get pods -n openshift-etcd

    The following output shows the expected entries.

    Example output
    NAME                                                   READY   STATUS      RESTARTS   AGE
    etcd-ci-ln-b6kfsw2-72292-mzwbq-master-0                4/4     Running     0          39m
    etcd-ci-ln-b6kfsw2-72292-mzwbq-master-1                4/4     Running     0          37m
    etcd-ci-ln-b6kfsw2-72292-mzwbq-master-2                4/4     Running     0          41m
    etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-0          1/1     Running     0          51m
    etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-1          1/1     Running     0          49m
    etcd-guard-ci-ln-b6kfsw2-72292-mzwbq-master-2          1/1     Running     0          54m
    installer-5-ci-ln-b6kfsw2-72292-mzwbq-master-1         0/1     Completed   0          51m
    installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-0         0/1     Completed   0          46m
    installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-1         0/1     Completed   0          44m
    installer-7-ci-ln-b6kfsw2-72292-mzwbq-master-2         0/1     Completed   0          49m
    installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-0         0/1     Completed   0          40m
    installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-1         0/1     Completed   0          38m
    installer-8-ci-ln-b6kfsw2-72292-mzwbq-master-2         0/1     Completed   0          42m
    revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-0   0/1     Completed   0          43m
    revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-1   0/1     Completed   0          43m
    revision-pruner-7-ci-ln-b6kfsw2-72292-mzwbq-master-2   0/1     Completed   0          43m
    revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-0   0/1     Completed   0          42m
    revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-1   0/1     Completed   0          42m
    revision-pruner-8-ci-ln-b6kfsw2-72292-mzwbq-master-2   0/1     Completed   0          42m
  3. Verify that the disk quota value is updated for the etcd pod by entering the following command:

    $ oc describe -n openshift-etcd pod/<etcd_podname> | grep "ETCD_QUOTA_BACKEND_BYTES"

    The value might not have changed from the default value of 8.

    Example output
    ETCD_QUOTA_BACKEND_BYTES:                               8589934592

    While the value that you set is an integer in GiB, the value shown in the output is converted to bytes.

Troubleshooting

If you encounter issues when you try to increase the database size for etcd, the following troubleshooting steps might help.

Value is too small

If the value that you specify is less than 8, you see the following error message:

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 5}}'
Example error message
The Etcd "cluster" is invalid:
* spec.backendQuotaGiB: Invalid value: 5: spec.backendQuotaGiB in body should be greater than or equal to 8
* spec.backendQuotaGiB: Invalid value: "integer": etcd backendQuotaGiB may not be decreased

To resolve this issue, specify an integer between 8 and 32.

Value is too large

If the value that you specify is greater than 32, you see the following error message:

$ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 64}}'
Example error message
The Etcd "cluster" is invalid: spec.backendQuotaGiB: Invalid value: 64: spec.backendQuotaGiB in body should be less than or equal to 32

To resolve this issue, specify an integer between 8 and 32.

Value is decreasing

If the value is set to a valid value between 8 and 32, you cannot decrease the value. Otherwise, you see an error message.

  1. Check to see the current value by entering the following command:

    $ oc describe etcd/cluster | grep "Backend Quota"
    Example output
    Backend Quota Gi B: 10
  2. Decrease the disk quota value by entering the following command:

    $ oc patch etcd/cluster --type=merge -p '{"spec": {"backendQuotaGiB": 8}}'
    Example error message
    The Etcd "cluster" is invalid: spec.backendQuotaGiB: Invalid value: "integer": etcd backendQuotaGiB may not be decreased
  3. To resolve this issue, specify an integer greater than 10.

Measuring network jitter between control plane nodes

The value of the heartbeat interval should be around the maximum of the average round-trip time (RTT) between members, normally around 1.5 times the round-trip time. With the OKD default heartbeat interval of 100 ms, the recommended RTT between control plane nodes is less than approximately 33 ms with a maximum of less than 66 ms (66 ms multiplied by 1.5 equals 99 ms). For more information, see "Setting tuning parameters for etcd". Any network latency that is higher might cause service-affecting events and cluster instability.

The network latency is influenced by many factors, including but not limited to the following factors:

  • The technology of the transport networks, such as copper, fiber, wireless, or satellite

  • The number and quality of the network devices in the transport network

A good evaluation reference is the comparison of the network latency in the organization with the commercial latencies that are published by telecommunications providers, such as monthly IP latency statistics.

Consider network latency with network jitter for more accurate calculations. Network jitter is the variance in network latency or, more specifically, the variation in the delay of received packets. On ideal network conditions, the jitter is as close to zero as possible. Network jitter affects the network latency calculations for etcd because the actual network latency over time will be the RTT plus or minus jitter. For example, a network with a maximum latency of 80 ms and jitter of 30 ms will experience latencies of 110 ms, which means etcd is missing heartbeats, causing request timeouts and temporary leader loss. During a leader loss and reelection, the Kubernetes API cannot process any request that causes a service-affecting event and instability of the cluster.

It’s important to measure the network jitter among all control plane nodes. To do so, you can use the iPerf3 tool in UDP mode.

Prerequisite
Procedure
  1. Connect to one of the control plane nodes and run the iPerf container as iPerf server in host network mode. When you are running in server mode, the tool accepts TCP and UDP tests. Enter the following command, being careful to replace <iperf_image> with your iPerf image:

    # podman run -ti --rm --net host <iperf_image> iperf3 -s
  2. Connect to another control plane node and run the iPerf in UDP client mode by entering the following command:

    # podman run -ti --rm --net host <iperf_image> iperf3 -u -c <node_iperf_server> -t 300

    The default test runs for 10 seconds, and at the end, the client output shows the average jitter from the client perspective.

  3. Run the debug node mode by entering the following command:

    # oc debug node/m1
    Example output
    Starting pod/m1-debug ...
    To use host binaries, run `chroot /host`
    Pod IP: 198.18.111.13
    If you don't see a command prompt, try pressing enter.
  4. Enter the following commands:

    sh-4.4# chroot /host
    sh-4.4# podman run -ti --rm --net host <iperf_image> iperf3 -u -c m0
    Example output
    Connecting to host m0, port 5201
    [  5] local 198.18.111.13 port 60878 connected to 198.18.111.12 port 5201
    [ ID] Interval           Transfer     Bitrate         Total Datagrams
    [  5]   0.00-1.00   sec   129 KBytes  1.05 Mbits/sec  91
    [  5]   1.00-2.00   sec   127 KBytes  1.04 Mbits/sec  90
    [  5]   2.00-3.00   sec   129 KBytes  1.05 Mbits/sec  91
    [  5]   3.00-4.00   sec   129 KBytes  1.05 Mbits/sec  91
    [  5]   4.00-5.00   sec   127 KBytes  1.04 Mbits/sec  90
    [  5]   5.00-6.00   sec   129 KBytes  1.05 Mbits/sec  91
    [  5]   6.00-7.00   sec   127 KBytes  1.04 Mbits/sec  90
    [  5]   7.00-8.00   sec   129 KBytes  1.05 Mbits/sec  91
    [  5]   8.00-9.00   sec   127 KBytes  1.04 Mbits/sec  90
    [  5]   9.00-10.00  sec   129 KBytes  1.05 Mbits/sec  91
    - - - - - - - - - - - - - - - - - - - - - - - - -
    [ ID] Interval           Transfer     Bitrate         Jitter    Lost/Total Datagrams
    [  5]   0.00-10.00  sec  1.25 MBytes  1.05 Mbits/sec  0.000 ms  0/906 (0%)  sender
    [  5]   0.00-10.04  sec  1.25 MBytes  1.05 Mbits/sec  1.074 ms  0/906 (0%)  receiver
    
    iperf Done.
  5. On the iPerf server, the output shows the jitter on every second interval. The average is shown at the end. For the purpose of this test, you want to identify the maximum jitter that is experienced during the test, ignoring the output of the first second as it might contain an invalid measurement. Enter the following command:

    # oc debug node/m0
    Example output
    Starting pod/m0-debug ...
    To use host binaries, run `chroot /host`
    Pod IP: 198.18.111.12
    If you don't see a command prompt, try pressing enter.
  6. Enter the following commands:

    sh-4.4# chroot /host
    sh-4.4# podman run -ti --rm --net host <iperf_image> iperf3 -s
    Example output
    -----------------------------------------------------------
    Server listening on 5201
    -----------------------------------------------------------
    Accepted connection from 198.18.111.13, port 44136
    [  5] local 198.18.111.12 port 5201 connected to 198.18.111.13 port 60878
    [ ID] Interval           Transfer     Bitrate         Jitter    Lost/Total Datagrams
    [  5]   0.00-1.00   sec   124 KBytes  1.02 Mbits/sec  4.763 ms  0/88 (0%)
    [  5]   1.00-2.00   sec   127 KBytes  1.04 Mbits/sec  4.735 ms  0/90 (0%)
    [  5]   2.00-3.00   sec   129 KBytes  1.05 Mbits/sec  0.568 ms  0/91 (0%)
    [  5]   3.00-4.00   sec   127 KBytes  1.04 Mbits/sec  2.443 ms  0/90 (0%)
    [  5]   4.00-5.00   sec   129 KBytes  1.05 Mbits/sec  1.372 ms  0/91 (0%)
    [  5]   5.00-6.00   sec   127 KBytes  1.04 Mbits/sec  2.769 ms  0/90 (0%)
    [  5]   6.00-7.00   sec   129 KBytes  1.05 Mbits/sec  2.393 ms  0/91 (0%)
    [  5]   7.00-8.00   sec   127 KBytes  1.04 Mbits/sec  0.883 ms  0/90 (0%)
    [  5]   8.00-9.00   sec   129 KBytes  1.05 Mbits/sec  0.594 ms  0/91 (0%)
    [  5]   9.00-10.00  sec   127 KBytes  1.04 Mbits/sec  0.953 ms  0/90 (0%)
    [  5]  10.00-10.04  sec  5.66 KBytes  1.30 Mbits/sec  1.074 ms  0/4 (0%)
    - - - - - - - - - - - - - - - - - - - - - - - - -
    [ ID] Interval           Transfer     Bitrate         Jitter    Lost/Total Datagrams
    [  5]   0.00-10.04  sec  1.25 MBytes  1.05 Mbits/sec  1.074 ms  0/906 (0%)  receiver
    -----------------------------------------------------------
    Server listening on 5201
    -----------------------------------------------------------
  7. Add the calculated jitter as a penalty to the network latency. For example, if the network latency is 80 ms and the jitter is 30 ms, consider an effective network latency of 110 ms for the purposes of the control plane. In this example, that value goes above the 100 ms threshold, and the system will miss heartbeats.

  8. When you calculate the network latency for etcd, use the effective network latency, which is the sum of the following equation:

    RTT + jitter

    You might be able to use the average jitter value to calculate the penalty, but the cluster can sporadically miss heartbeats if the etcd heartbeat timer is lower than the sum of the following equation:

    RTT + max(jitter)

    Instead, consider using the 99th percentile or max jitter value for a more resilient deployment:

    Effective Network Latency = RTT + max(jitter)

How etcd peer round trip time affects performance

The etcd peer round trip time is an end-to-end test metric on how quickly something can be replicated among members. It shows the latency of etcd to finish replicating a client request among all the etcd members. The etcd peer round trip time is not the same thing as the network round trip time.

You can monitor various etcd metrics on dashboards in the OKD console. In the console, click ObserveDashboards and from the dropdown list, select etcd.

Near the end of the etcd dashboard, you can find a plot that summarizes the etcd peer round trip time.

These etcd metrics are collected by the OpenShift metrics system in Prometheus. You can access them from the CLI by following the Red Hat Knowledgebase solution, How to query from the command line Prometheus statistics.

# Get token to connect to Prometheus
SECRET=$(oc get secret -n openshift-user-workload-monitoring | grep  prometheus-user-workload-token | head -n 1 | awk '{print $1 }')
export TOKEN=$(oc get secret $SECRET -n openshift-user-workload-monitoring -o json | jq -r '.data.token' | base64 -d)
export THANOS_QUERIER_HOST=$(oc get route thanos-querier -n openshift-monitoring -o json | jq -r '.spec.host')

Queries must be URL-encoded. The following example shows how to retrieve the metrics that are reporting the round trip time (in seconds) for etcd to finish replicating the client requests among the members:

# prometheus query
query="histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[5m]))"

# urlencoded query
encoded_query=$(printf "%s" $query |jq -sRr @uri)

# querying the OpenShift metrics service
curl -s -X GET -k -H "Authorization: Bearer $TOKEN" "https://$THANOS_QUERIER_HOST/api/v1/query?query=$encoded_query" | jq '.data.result[] | .metric.pod,.value[1]'

"etcd-m2"
"0.09318400000000004"   # example ~93ms
"etcd-m0"
"0.050688"              # example ~51ms
"etcd-m1"
"0.050688"              # example ~51ms

The following metrics are also relevant to understanding etcd performance:

etcd_disk_wal_fsync_duration_seconds_bucket

Reports the etcd WAL fsync duration.

etcd_disk_backend_commit_duration_seconds_bucket

Reports the etcd backend commit latency duration.

etcd_server_leader_changes_seen_total

Reports the leader changes.

Determining Kubernetes API transaction rate for your environment

When you are using stretched control planes, the Kubernetes API transaction rate depends on the characteristics of the particular deployment. Specifically, it depends on the following combined factors:

  • The etcd disk latency

  • The etcd round trip time

  • The size of objects that are being written to the API

As a result, when you use stretched control planes, cluster administrators must test the environment to determine the sustained transaction rate that is possible for the environment. The kube-burner tool is useful for that purpose. The binary includes a wrapper for testing OpenShift clusters: kube-burner-ocp. You can use kube-burner-ocp to test cluster or node density. To test the control plane, kube-burner-ocp has three workload profiles: cluster-density, cluster-density-v2, and cluster-density-ms. Each workload profile creates a series of resources that are designed to load the control plane. For more information about each profile, see the kube-burner-ocp workload documentation.

Procedure
  1. Enter a command to create and delete resources. The following example shows a command that creates and deletes resources within 20 minutes:

    # kube-burner ocp cluster-density-ms --churn-duration 20m --churn-delay 0s --iterations 10 --timeout 30m
  2. The OKD console provides a dashboard with all the relevant API performance information. To access API performance information, click ObserveDashboards, and from the Dashboards menu, click API Performance.

  3. During the run, observe the API performance dashboard in the OKD console by clicking ObserveDashboards, and from the Dashboards menu, click API Performance.

    On the dashboard, notice how the control plane responds during load and the 99th percentile transaction rate it can achieve for the execution of various verbs and request rates by read and write. Use this information and the knowledge of your organization’s workload to determine the load that the organization can put in the clusters for the specific stretched control plane deployment.

Additional resources