Cloud Deployment Manager V2 API
In OpenShift Container Platform version 4.4, you can install a cluster on Google Cloud Platform (GCP) that uses infrastructure that you provide.
The steps for performing a user-provided infrastructure install are outlined here. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
Be sure to also review this site list if you are configuring a proxy. |
Because your cluster has limited access to automatic machine management when you
use infrastructure that you provision, you must provide a mechanism for approving
cluster certificate signing requests (CSRs) after installation. The
kube-controller-manager
only approves the kubelet client CSRs. The
machine-approver
cannot guarantee the validity of a serving certificate
that is requested by using kubelet credentials because it cannot confirm that
the correct machine issued the request. You must determine and implement a
method of verifying the validity of the kubelet serving certificate requests
and approving them.
Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
You created a project to host your cluster.
Enable the following required API services in the project that hosts your cluster. See Enabling services in the GCP documentation.
API service | Console service name |
---|---|
Cloud Deployment Manager V2 API |
|
Compute Engine API |
|
Google Cloud APIs |
|
Cloud Resource Manager API |
|
Google DNS API |
|
IAM Service Account Credentials API |
|
Identity and Access Management (IAM) API |
|
Service Management API |
|
Service Usage API |
|
Google Cloud Storage JSON API |
|
Cloud Storage |
|
To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the same project that you host the OpenShift Container Platform cluster. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains. |
Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
Use an appropriate root domain, such as openshiftcorp.com
, or subdomain,
such as clusters.openshiftcorp.com
.
Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
You typically have four name servers.
Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
Service | Component | Location | Total resources required | Resources removed after bootstrap |
---|---|---|---|---|
Service account |
IAM |
Global |
5 |
0 |
Firewall rules |
Networking |
Global |
11 |
1 |
Forwarding rules |
Compute |
Global |
2 |
0 |
Health checks |
Compute |
Global |
2 |
0 |
Images |
Compute |
Global |
1 |
0 |
Networks |
Networking |
Global |
1 |
0 |
Routers |
Networking |
Global |
1 |
0 |
Routes |
Networking |
Global |
2 |
0 |
Subnetworks |
Compute |
Global |
2 |
0 |
Target pools |
Networking |
Global |
2 |
0 |
If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region. |
Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
asia-east2
asia-northeast2
asia-south1
australia-southeast1
europe-north1
europe-west2
europe-west3
europe-west6
northamerica-northeast1
southamerica-east1
us-west2
You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster. :!template:
OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
You created a project to host your cluster.
Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
Grant the service account the appropriate permissions. You can either
grant the individual permissions that follow or assign the Owner
role to it.
See Granting roles to a service account for specific resources.
While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable. |
Create the service account key in JSON format. See Creating service account keys in the GCP documentation.
The service account key is required to create a cluster.
When you attach the Owner
role to the service account that you create, you
grant that service account all permissions, including those that are required to
install OpenShift Container Platform. To deploy an OpenShift Container Platform cluster, the service
account requires the following permissions. If you deploy your cluster into an existing VPC, the service account does not require certain networking permissions, which are noted in the following lists:
Compute Admin
Security Admin
Service Account Admin
Service Account User
Storage Admin
DNS Administrator
Deployment Manager Editor
Service Account Key Admin
For the cluster to create new limited credentials for its Operators, add the following role:
Service Account Key Admin
The roles are applied to the service accounts that the control plane and compute machines use:
Account | Roles |
---|---|
Control Plane |
|
|
|
|
|
|
|
|
|
Compute |
|
|
You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
asia-east1
(Changhua County, Taiwan)
asia-east2
(Hong Kong)
asia-northeast1
(Tokyo, Japan)
asia-northeast2
(Osaka, Japan)
asia-south1
(Mumbai, India)
asia-southeast1
(Jurong West, Singapore)
australia-southeast1
(Sydney, Australia)
europe-north1
(Hamina, Finland)
europe-west1
(St. Ghislain, Belgium)
europe-west2
(London, England, UK)
europe-west3
(Frankfurt, Germany)
europe-west4
(Eemshaven, Netherlands)
europe-west6
(Zürich, Switzerland)
northamerica-northeast1
(Montréal, Québec, Canada)
southamerica-east1
(São Paulo, Brazil)
us-central1
(Council Bluffs, Iowa, USA)
us-east1
(Moncks Corner, South Carolina, USA)
us-east4
(Ashburn, Northern Virginia, USA)
us-west1
(The Dalles, Oregon, USA)
us-west2
(Los Angeles, California, USA)
To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must install and configure the CLI tools for GCP.
You created a project to host your cluster.
You created a service account and granted it the required permissions.
Install the following binaries in $PATH
:
gcloud
gsutil
See Install the latest Cloud SDK version in the GCP documentation.
Authenticate using the gcloud
tool with your configured service account.
To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned
infrastructure, you must generate the files that the installation
program needs to deploy your cluster and modify them so that the cluster creates
only the machines that it will use. You generate and customize the
install-config.yaml
file, Kubernetes manifests, and Ignition config files.
You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).
Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Create the install-config.yaml
file.
Run the following command:
$ ./openshift-install create install-config --dir=<installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version. |
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
Select gcp as the platform to target.
If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
Select the region to deploy the cluster to.
Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
Enter a descriptive name for your cluster. If you provide a name that is longer than 6 characters, only the first 6 characters will be used in the infrastructure ID that is generated from the cluster name.
Paste the pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site.
Optional: If you do not want the cluster to provision compute machines, empty
the compute pool by editing the resulting install-config.yaml
file to set
replicas
to 0
for the compute
pool:
compute:
- hyperthreading: Enabled
name: worker
platform: {}
replicas: 0 (1)
1 | Set to 0 . |
Modify the install-config.yaml
file. You can find more information about
the available parameters in the Installation configuration parameters section.
Back up the install-config.yaml
file so that you can use
it to install multiple clusters.
The |
Production environments can deny direct access to the Internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
An existing install-config.yaml
file.
Review the sites that your cluster requires access to and determine whether any need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. Add sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: http://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
...
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify an httpProxy value. |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. If
this field is not specified, then httpProxy is used for both HTTP and HTTPS
connections.
If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify an httpsProxy value. |
3 | A comma-separated list of destination domain names, domains, IP addresses, or
other network CIDRs to exclude proxying. Preface a domain with . to include
all subdomains of that domain. Use * to bypass proxy for all destinations. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace that contains one or more additional CA
certificates that are required for proxying HTTPS connections. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges these contents
with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the Proxy
object’s trustedCA field. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust
bundle.
If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must provide the MITM CA certificate. |
The installation program does not support the proxy |
Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending |
Obtain the OpenShift Container Platform installation program.
Create the install-config.yaml
installation configuration file.
Generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir=<installation_directory> (1) INFO Consuming Install Config from target directory WARNING Making control-plane schedulable by setting mastersSchedulable to true for Scheduler cluster settings
1 | For <installation_directory> , specify the installation directory that
contains the install-config.yaml file you created. |
Because you create your own compute machines later in the installation process, you can safely ignore this warning.
Remove the Kubernetes manifest files that define the control plane machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml
By removing these files, you prevent the cluster from automatically generating control plane machines.
Optional: If you do not want the cluster to provision compute machines, remove the Kubernetes manifest files that define the worker machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage the worker machines yourself, you do not need to initialize these machines.
Modify the <installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file to prevent pods from being scheduled on the control plane machines:
Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml
file.
Locate the mastersSchedulable
parameter and set its value to False
.
Save and exit the file.
Currently, due to a Kubernetes limitation, router Pods running on control plane machines will not be reachable by the ingress load balancer. This step might not be required in a future minor version of OpenShift Container Platform. |
Optional: If you do not want
the Ingress Operator
to create DNS records on your behalf, remove the privateZone
and publicZone
sections from the <installation_directory>/manifests/cluster-dns-02-config.yml
DNS configuration file:
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
creationTimestamp: null
name: cluster
spec:
baseDomain: example.openshift.com
privateZone: (1)
id: mycluster-100419-private-zone
publicZone: (1)
id: example.openshift.com
status: {}
1 | Remove these sections completely. |
If you do so, you must add ingress DNS records manually in a later step.
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir=<installation_directory> (1)
1 | For <installation_directory> , specify the same installation directory. |
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
The Ignition configs contain a unique cluster identifier that you can use to uniquely identify your cluster in Google Cloud Platform (GCP). The provided Deployment Manager templates contain references to this infrastructure name, so you must extract it.
Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Generate the Ignition config files for your cluster.
Install the jq
package.
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID /<installation_directory>/metadata.json (1) openshift-vw9j6 (2)
1 | For <installation_directory> , specify the path to the directory that you stored the
installation files in. |
2 | The output of this command is your cluster name and a random string. |
You must export a common set of variables that are used with the provided Deployment Manager templates used to assist in completing a user-provided infrastructure install on Google Cloud Platform (GCP).
Specific Deployment Manager templates can also require additional exported variables, which are detailed in their related procedures. |
Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Generate the Ignition config files for your cluster.
Install the jq
package.
Export the following common variables to be used by the provided Deployment Manager templates:
$ export BASE_DOMAIN='<base_domain>' $ export BASE_DOMAIN_ZONE_NAME='<base_domain_zone_name>' $ export NETWORK_CIDR='10.0.0.0/16' $ export master_SUBNET_CIDR='10.0.0.0/19' $ export WORKER_SUBNET_CIDR='10.0.32.0/19' $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1) $ export CLUSTER_NAME=`jq -r .clusterName <installation_directory>/metadata.json` $ export INFRA_ID=`jq -r .infraID <installation_directory>/metadata.json` $ export PROJECT_NAME=`jq -r .gcp.projectID <installation_directory>/metadata.json` $ export REGION=`jq -r .gcp.region <installation_directory>/metadata.json`
1 | For <installation_directory> , specify the path to the directory that you stored the installation files in. |
You must create a VPC in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements. One way to create the VPC is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Copy the template from the Deployment Manager template for the VPC
section of this topic and save it as 01_vpc.py
on your computer. This template
describes the VPC that your cluster requires.
Create a 01_vpc.yaml
resource definition file:
$ cat <<EOF >01_vpc.yaml imports: - path: 01_vpc.py resources: - name: cluster-vpc type: 01_vpc.py properties: infra_id: '${INFRA_ID}' (1) region: '${REGION}' (2) master_subnet_cidr: '${master_SUBNET_CIDR}' (3) worker_subnet_cidr: '${WORKER_SUBNET_CIDR}' (4) EOF
1 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
2 | region is the region to deploy the cluster into, for example us-east1 . |
3 | master_subnet_cidr is the CIDR for the master subnet, for example 10.0.0.0/19 . |
4 | worker_subnet_cidr is the CIDR for the worker subnet, for example 10.0.32.0/19 . |
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-vpc --config 01_vpc.yaml
You can use the following Deployment Manager template to deploy the VPC that you need for your OpenShift Container Platform cluster:
01_vpc.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-network',
'type': 'compute.v1.network',
'properties': {
'region': context.properties['region'],
'autoCreateSubnetworks': False
}
}, {
'name': context.properties['infra_id'] + '-master-subnet',
'type': 'compute.v1.subnetwork',
'properties': {
'region': context.properties['region'],
'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
'ipCidrRange': context.properties['master_subnet_cidr']
}
}, {
'name': context.properties['infra_id'] + '-worker-subnet',
'type': 'compute.v1.subnetwork',
'properties': {
'region': context.properties['region'],
'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
'ipCidrRange': context.properties['worker_subnet_cidr']
}
}, {
'name': context.properties['infra_id'] + '-master-nat-ip',
'type': 'compute.v1.address',
'properties': {
'region': context.properties['region']
}
}, {
'name': context.properties['infra_id'] + '-worker-nat-ip',
'type': 'compute.v1.address',
'properties': {
'region': context.properties['region']
}
}, {
'name': context.properties['infra_id'] + '-router',
'type': 'compute.v1.router',
'properties': {
'region': context.properties['region'],
'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)',
'nats': [{
'name': context.properties['infra_id'] + '-nat-master',
'natIpAllocateOption': 'MANUAL_ONLY',
'natIps': ['$(ref.' + context.properties['infra_id'] + '-master-nat-ip.selfLink)'],
'minPortsPerVm': 7168,
'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
'subnetworks': [{
'name': '$(ref.' + context.properties['infra_id'] + '-master-subnet.selfLink)',
'sourceIpRangesToNat': ['ALL_IP_RANGES']
}]
}, {
'name': context.properties['infra_id'] + '-nat-worker',
'natIpAllocateOption': 'MANUAL_ONLY',
'natIps': ['$(ref.' + context.properties['infra_id'] + '-worker-nat-ip.selfLink)'],
'minPortsPerVm': 128,
'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS',
'subnetworks': [{
'name': '$(ref.' + context.properties['infra_id'] + '-worker-subnet.selfLink)',
'sourceIpRangesToNat': ['ALL_IP_RANGES']
}]
}]
}
}]
return {'resources': resources}
You must configure networking and load balancing in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Copy the template from the Deployment Manager template for the network and load balancers
section of this topic and save it as 02_infra.py
on your computer. This
template describes the networking and load balancing objects that your cluster
requires.
Export the following variable required by the resource definition:
$ export CLUSTER_NETWORK=`gcloud compute networks describe ${INFRA_ID}-network --format json | jq -r .selfLink`
Create a 02_infra.yaml
resource definition file:
$ cat <<EOF >02_infra.yaml imports: - path: 02_infra.py resources: - name: cluster-infra type: 02_infra.py properties: infra_id: '${INFRA_ID}' (1) region: '${REGION}' (2) cluster_domain: '${CLUSTER_NAME}.${BASE_DOMAIN}' (3) cluster_network: '${CLUSTER_NETWORK}' (4) EOF
1 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
2 | region is the region to deploy the cluster into, for example us-east1 . |
3 | cluster_domain is the domain for the cluster, for example openshift.example.com . |
4 | cluster_network is the selfLink URL to the cluster network. |
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-infra --config 02_infra.yaml
The templates do not create DNS entries due to limitations of Deployment Manager, so you must create them manually:
Export the following variable:
$ export CLUSTER_IP=`gcloud compute addresses describe ${INFRA_ID}-cluster-public-ip --region=${REGION} --format json | jq -r .address`
Add external DNS entries:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}
Add internal DNS entries:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api-int.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone
You can use the following Deployment Manager template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster:
02_infra.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-cluster-public-ip',
'type': 'compute.v1.address',
'properties': {
'region': context.properties['region']
}
}, {
'name': context.properties['infra_id'] + '-api-http-health-check',
'type': 'compute.v1.httpHealthCheck',
'properties': {
'port': 6080,
'requestPath': '/readyz'
}
}, {
'name': context.properties['infra_id'] + '-api-target-pool',
'type': 'compute.v1.targetPool',
'properties': {
'region': context.properties['region'],
'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-http-health-check.selfLink)'],
'instances': []
}
}, {
'name': context.properties['infra_id'] + '-api-forwarding-rule',
'type': 'compute.v1.forwardingRule',
'properties': {
'region': context.properties['region'],
'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)',
'target': '$(ref.' + context.properties['infra_id'] + '-api-target-pool.selfLink)',
'portRange': '6443'
}
}, {
'name': context.properties['infra_id'] + '-ign-http-health-check',
'type': 'compute.v1.httpHealthCheck',
'properties': {
'port': 22624,
'requestPath': '/healthz'
}
}, {
'name': context.properties['infra_id'] + '-ign-target-pool',
'type': 'compute.v1.targetPool',
'properties': {
'region': context.properties['region'],
'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-ign-http-health-check.selfLink)'],
'instances': []
}
}, {
'name': context.properties['infra_id'] + '-ign-forwarding-rule',
'type': 'compute.v1.forwardingRule',
'properties': {
'region': context.properties['region'],
'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)',
'target': '$(ref.' + context.properties['infra_id'] + '-ign-target-pool.selfLink)',
'portRange': '22623'
}
}, {
'name': context.properties['infra_id'] + '-private-zone',
'type': 'dns.v1.managedZone',
'properties': {
'description': '',
'dnsName': context.properties['cluster_domain'] + '.',
'visibility': 'private',
'privateVisibilityConfig': {
'networks': [{
'networkUrl': context.properties['cluster_network']
}]
}
}
}]
return {'resources': resources}
You must create security groups and roles in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Copy the template from the Deployment Manager template for firewall rules and IAM roles
section of this topic and save it as 03_security.py
on your computer. This
template describes the security groups and roles that your cluster requires.
Export the following variables required by the resource definition:
$ export master_NAT_IP=`gcloud compute addresses describe ${INFRA_ID}-master-nat-ip --region ${REGION} --format json | jq -r .address` $ export WORKER_NAT_IP=`gcloud compute addresses describe ${INFRA_ID}-worker-nat-ip --region ${REGION} --format json | jq -r .address`
Create a 03_security.yaml
resource definition file:
$ cat <<EOF >03_security.yaml imports: - path: 03_security.py resources: - name: cluster-security type: 03_security.py properties: infra_id: '${INFRA_ID}' (1) region: '${REGION}' (2) cluster_network: '${CLUSTER_NETWORK}' (3) network_cidr: '${NETWORK_CIDR}' (4) master_nat_ip: '${master_NAT_IP}' (5) worker_nat_ip: '${WORKER_NAT_IP}' (6) EOF
1 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
2 | region is the region to deploy the cluster into, for example us-east1 . |
3 | cluster_network is the selfLink URL to the cluster network. |
4 | network_cidr is the CIDR of the VPC network, for example 10.0.0.0/16 . |
5 | master_nat_ip is the IP address of the master NAT, for example 34.94.100.1 . |
6 | worker_nat_ip is the IP address of the worker NAT, for example 34.94.200.1 . |
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-security --config 03_security.yaml
The templates do not create the policy bindings due to limitations of Deployment Manager, so you must create them manually:
$ export master_SA=${INFRA_ID}-m@${PROJECT_NAME}.iam.gserviceaccount.com $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${master_SA}" --role "roles/compute.instanceAdmin" $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${master_SA}" --role "roles/compute.networkAdmin" $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${master_SA}" --role "roles/compute.securityAdmin" $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${master_SA}" --role "roles/iam.serviceAccountUser" $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${master_SA}" --role "roles/storage.admin" $ export WORKER_SA=${INFRA_ID}-w@${PROJECT_NAME}.iam.gserviceaccount.com $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SA}" --role "roles/compute.viewer" $ gcloud projects add-iam-policy-binding ${PROJECT_NAME} --member "serviceAccount:${WORKER_SA}" --role "roles/storage.admin"
Create a service account key and store it locally for later use:
$ gcloud iam service-accounts keys create service-account-key.json --iam-account=${master_SA}
You can use the following Deployment Manager template to deploy the security objects that you need for your OpenShift Container Platform cluster:
03_security.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-api',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['6443']
}],
'sourceRanges': ['0.0.0.0/0'],
'targetTags': [context.properties['infra_id'] + '-master']
}
}, {
'name': context.properties['infra_id'] + '-mcs',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['22623']
}],
'sourceRanges': [
context.properties['network_cidr'],
context.properties['master_nat_ip'],
context.properties['worker_nat_ip']
],
'targetTags': [context.properties['infra_id'] + '-master']
}
}, {
'name': context.properties['infra_id'] + '-health-checks',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['6080', '22624']
}],
'sourceRanges': ['35.191.0.0/16', '130.211.0.0/22', '209.85.152.0/22', '209.85.204.0/22'],
'targetTags': [context.properties['infra_id'] + '-master']
}
}, {
'name': context.properties['infra_id'] + '-etcd',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['2379-2380']
}],
'sourceTags': [context.properties['infra_id'] + '-master'],
'targetTags': [context.properties['infra_id'] + '-master']
}
}, {
'name': context.properties['infra_id'] + '-control-plane',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['10257']
},{
'IPProtocol': 'tcp',
'ports': ['10259']
}],
'sourceTags': [
context.properties['infra_id'] + '-master',
context.properties['infra_id'] + '-worker'
],
'targetTags': [context.properties['infra_id'] + '-master']
}
}, {
'name': context.properties['infra_id'] + '-internal-network',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'icmp'
},{
'IPProtocol': 'tcp',
'ports': ['22']
}],
'sourceRanges': [context.properties['network_cidr']],
'targetTags': [
context.properties['infra_id'] + '-master',
context.properties['infra_id'] + '-worker'
]
}
}, {
'name': context.properties['infra_id'] + '-internal-cluster',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'udp',
'ports': ['4789', '6081']
},{
'IPProtocol': 'tcp',
'ports': ['9000-9999']
},{
'IPProtocol': 'udp',
'ports': ['9000-9999']
},{
'IPProtocol': 'tcp',
'ports': ['10250']
},{
'IPProtocol': 'tcp',
'ports': ['30000-32767']
},{
'IPProtocol': 'udp',
'ports': ['30000-32767']
}],
'sourceTags': [
context.properties['infra_id'] + '-master',
context.properties['infra_id'] + '-worker'
],
'targetTags': [
context.properties['infra_id'] + '-master',
context.properties['infra_id'] + '-worker'
]
}
}, {
'name': context.properties['infra_id'] + '-master-node-sa',
'type': 'iam.v1.serviceAccount',
'properties': {
'accountId': context.properties['infra_id'] + '-m',
'displayName': context.properties['infra_id'] + '-master-node'
}
}, {
'name': context.properties['infra_id'] + '-worker-node-sa',
'type': 'iam.v1.serviceAccount',
'properties': {
'accountId': context.properties['infra_id'] + '-w',
'displayName': context.properties['infra_id'] + '-worker-node'
}
}]
return {'resources': resources}
You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Google Cloud Platform (GCP) for your OpenShift Container Platform nodes.
Obtain the RHCOS image from the Product Downloads page on the Red Hat customer portal or the RHCOS image mirror page.
The RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available. |
The file name contains the OpenShift Container Platform version number in the format
rhcos-<version>-gcp.tar
.
Export the following variable:
$ export IMAGE_SOURCE=<downloaded_image_file_path>
Create the cluster image:
$ gcloud compute images create "${INFRA_ID}-rhcos-image" \ --source-uri="${IMAGE_SOURCE}"
You must create the bootstrap machine in Google Cloud Platform (GCP) to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Create and configure networking and load balancers in GCP.
Create control plane and compute roles.
Copy the template from the Deployment Manager template for the bootstrap machine
section of this topic and save it as 04_bootstrap.py
on your computer. This
template describes the bootstrap machine that your cluster requires.
Export the following variables required by the resource definition:
$ export CONTROL_SUBNET=`gcloud compute networks subnets describe ${INFRA_ID}-master-subnet --region=${REGION} --format json | jq -r .selfLink` $ export CLUSTER_IMAGE=`gcloud compute images describe ${INFRA_ID}-rhcos-image --format json | jq -r .selfLink` $ export ZONE_0=`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[0] | cut -d "/" -f9` $ export ZONE_1=`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[1] | cut -d "/" -f9` $ export ZONE_2=`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[2] | cut -d "/" -f9`
Create a bucket and upload the bootstrap.ign
file:
$ gsutil mb gs://${INFRA_ID}-bootstrap-ignition $ gsutil cp bootstrap.ign gs://${INFRA_ID}-bootstrap-ignition/
Create a signed URL for the bootstrap instance to use to access the Ignition config. Export the URL from the output as a variable:
$ export BOOTSTRAP_IGN=`gsutil signurl -d 1h service-account-key.json \ gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign | grep "^gs:" | awk '{print $5}'`
Create a 04_bootstrap.yaml
resource definition file:
$ cat <<EOF >04_bootstrap.yaml imports: - path: 04_bootstrap.py resources: - name: cluster-bootstrap type: 04_bootstrap.py properties: infra_id: '${INFRA_ID}' (1) region: '${REGION}' (2) zone: '${ZONE_0}' (3) cluster_network: '${CLUSTER_NETWORK}' (4) control_subnet: '${CONTROL_SUBNET}' (5) image: '${CLUSTER_IMAGE}' (6) machine_type: 'n1-standard-4' (7) root_volume_size: '128' (8) bootstrap_ign: '${BOOTSTRAP_IGN}' (9) EOF
1 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
2 | region is the region to deploy the cluster into, for example us-east1 . |
3 | zone is the zone to deploy the bootstrap instance into, for example us-east1-b . |
4 | cluster_network is the selfLink URL to the cluster network. |
5 | control_subnet is the selfLink URL to the control subnet. |
6 | image is the selfLink URL to the RHCOS image. |
7 | machine_type is the machine type of the instance, for example n1-standard-4 . |
8 | bootstrap_ign is the URL output when creating a signed URL above. |
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-bootstrap --config 04_bootstrap.yaml
The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the bootstrap machine manually:
$ gcloud compute target-pools add-instances \ ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-bootstrap $ gcloud compute target-pools add-instances \ ${INFRA_ID}-ign-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-bootstrap
You can use the following Deployment Manager template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
04_bootstrap.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-bootstrap-public-ip',
'type': 'compute.v1.address',
'properties': {
'region': context.properties['region']
}
}, {
'name': context.properties['infra_id'] + '-bootstrap-in-ssh',
'type': 'compute.v1.firewall',
'properties': {
'network': context.properties['cluster_network'],
'allowed': [{
'IPProtocol': 'tcp',
'ports': ['22']
}],
'sourceRanges': ['0.0.0.0/0'],
'targetTags': [context.properties['infra_id'] + '-bootstrap']
}
}, {
'name': context.properties['infra_id'] + '-bootstrap',
'type': 'compute.v1.instance',
'properties': {
'disks': [{
'autoDelete': True,
'boot': True,
'initializeParams': {
'diskSizeGb': context.properties['root_volume_size'],
'sourceImage': context.properties['image']
}
}],
'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
'metadata': {
'items': [{
'key': 'user-data',
'value': '{"ignition":{"config":{"replace":{"source":"' + context.properties['bootstrap_ign'] + '","verification":{}}},"timeouts":{},"version":"2.1.0"},"networkd":{},"passwd":{},"storage":{},"systemd":{}}',
}]
},
'networkInterfaces': [{
'subnetwork': context.properties['control_subnet'],
'accessConfigs': [{
'natIP': '$(ref.' + context.properties['infra_id'] + '-bootstrap-public-ip.address)'
}]
}],
'tags': {
'items': [
context.properties['infra_id'] + '-master',
context.properties['infra_id'] + '-bootstrap'
]
},
'zone': context.properties['zone']
}
}]
return {'resources': resources}
You must create the control plane machines in Google Cloud Platform (GCP) for your cluster to use. One way to create these machines is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Create and configure networking and load balancers in GCP.
Create control plane and compute roles.
Create the bootstrap machine.
Copy the template from the Deployment Manager template for control plane machines
section of this topic and save it as 05_control_plane.py
on your computer.
This template describes the control plane machines that your cluster requires.
Export the following variables needed by the resource definition:
$ export master_SERVICE_ACCOUNT_EMAIL=`gcloud iam service-accounts list | grep "^${INFRA_ID}-master-node " | awk '{print $2}'` $ export master_IGNITION=`cat master.ign`
Create a 05_control_plane.yaml
resource definition file:
$ cat <<EOF >05_control_plane.yaml imports: - path: 05_control_plane.py resources: - name: cluster-control-plane type: 05_control_plane.py properties: infra_id: '${INFRA_ID}' (1) zones: (2) - '${ZONE_0}' - '${ZONE_1}' - '${ZONE_2}' control_subnet: '${CONTROL_SUBNET}' (3) image: '${CLUSTER_IMAGE}' (4) machine_type: 'n1-standard-4' (5) root_volume_size: '128' service_account_email: '${master_SERVICE_ACCOUNT_EMAIL}' (6) ignition: '${master_IGNITION}' (7) EOF
1 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
2 | zones are the zones to deploy the control plane instances into, for example us-east1-b , us-east1-c , and us-east1-d . |
3 | control_subnet is the selfLink URL to the control subnet. |
4 | image is the selfLink URL to the RHCOS image. |
5 | machine_type is the machine type of the instance, for example n1-standard-4 . |
6 | service_account_email is the email address for the master service account that you created. |
7 | ignition is the contents of the master.ign file. |
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-control-plane --config 05_control_plane.yaml
The templates do not manage DNS entries due to limitations of Deployment Manager, so you must add the etcd entries manually:
$ export master0_IP=`gcloud compute instances describe ${INFRA_ID}-m-0 --zone ${ZONE_0} --format json | jq -r .networkInterfaces[0].networkIP` $ export master1_IP=`gcloud compute instances describe ${INFRA_ID}-m-1 --zone ${ZONE_1} --format json | jq -r .networkInterfaces[0].networkIP` $ export master2_IP=`gcloud compute instances describe ${INFRA_ID}-m-2 --zone ${ZONE_2} --format json | jq -r .networkInterfaces[0].networkIP` $ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${master0_IP} --name etcd-0.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${master1_IP} --name etcd-1.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${master2_IP} --name etcd-2.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add \ "0 10 2380 etcd-0.${CLUSTER_NAME}.${BASE_DOMAIN}." \ "0 10 2380 etcd-1.${CLUSTER_NAME}.${BASE_DOMAIN}." \ "0 10 2380 etcd-2.${CLUSTER_NAME}.${BASE_DOMAIN}." \ --name _etcd-server-ssl._tcp.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type SRV --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone
The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the control plane machines manually:
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-m-0 $ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-m-1 $ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-m-2 $ gcloud compute target-pools add-instances ${INFRA_ID}-ign-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-m-0 $ gcloud compute target-pools add-instances ${INFRA_ID}-ign-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-m-1 $ gcloud compute target-pools add-instances ${INFRA_ID}-ign-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-m-2
You can use the following Deployment Manager template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
05_control_plane.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-m-0',
'type': 'compute.v1.instance',
'properties': {
'disks': [{
'autoDelete': True,
'boot': True,
'initializeParams': {
'diskSizeGb': context.properties['root_volume_size'],
'diskType': 'zones/' + context.properties['zones'][0] + '/diskTypes/pd-ssd',
'sourceImage': context.properties['image']
}
}],
'machineType': 'zones/' + context.properties['zones'][0] + '/machineTypes/' + context.properties['machine_type'],
'metadata': {
'items': [{
'key': 'user-data',
'value': context.properties['ignition']
}]
},
'networkInterfaces': [{
'subnetwork': context.properties['control_subnet']
}],
'serviceAccounts': [{
'email': context.properties['service_account_email'],
'scopes': ['https://www.googleapis.com/auth/cloud-platform']
}],
'tags': {
'items': [
context.properties['infra_id'] + '-master',
]
},
'zone': context.properties['zones'][0]
}
}, {
'name': context.properties['infra_id'] + '-m-1',
'type': 'compute.v1.instance',
'properties': {
'disks': [{
'autoDelete': True,
'boot': True,
'initializeParams': {
'diskSizeGb': context.properties['root_volume_size'],
'diskType': 'zones/' + context.properties['zones'][1] + '/diskTypes/pd-ssd',
'sourceImage': context.properties['image']
}
}],
'machineType': 'zones/' + context.properties['zones'][1] + '/machineTypes/' + context.properties['machine_type'],
'metadata': {
'items': [{
'key': 'user-data',
'value': context.properties['ignition']
}]
},
'networkInterfaces': [{
'subnetwork': context.properties['control_subnet']
}],
'serviceAccounts': [{
'email': context.properties['service_account_email'],
'scopes': ['https://www.googleapis.com/auth/cloud-platform']
}],
'tags': {
'items': [
context.properties['infra_id'] + '-master',
]
},
'zone': context.properties['zones'][1]
}
}, {
'name': context.properties['infra_id'] + '-m-2',
'type': 'compute.v1.instance',
'properties': {
'disks': [{
'autoDelete': True,
'boot': True,
'initializeParams': {
'diskSizeGb': context.properties['root_volume_size'],
'diskType': 'zones/' + context.properties['zones'][2] + '/diskTypes/pd-ssd',
'sourceImage': context.properties['image']
}
}],
'machineType': 'zones/' + context.properties['zones'][2] + '/machineTypes/' + context.properties['machine_type'],
'metadata': {
'items': [{
'key': 'user-data',
'value': context.properties['ignition']
}]
},
'networkInterfaces': [{
'subnetwork': context.properties['control_subnet']
}],
'serviceAccounts': [{
'email': context.properties['service_account_email'],
'scopes': ['https://www.googleapis.com/auth/cloud-platform']
}],
'tags': {
'items': [
context.properties['infra_id'] + '-master',
]
},
'zone': context.properties['zones'][2]
}
}]
return {'resources': resources}
After you create all of the required infrastructure in Google Cloud Platform (GCP), wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Create and configure networking and load balancers in GCP.
Create control plane and compute roles.
Create the bootstrap machine.
Create the control plane machines.
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install wait-for bootstrap-complete --dir=<installation_directory> \ (1) --log-level info (2)
1 | For <installation_directory> , specify the path to the directory that you
stored the installation files in. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
If the command exits without a FATAL
warning, your production control plane
has initialized.
Delete the bootstrap resources:
$ gcloud compute target-pools remove-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-bootstrap $ gcloud compute target-pools remove-instances ${INFRA_ID}-ign-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-bootstrap $ gsutil rm gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign $ gsutil rb gs://${INFRA_ID}-bootstrap-ignition $ gcloud deployment-manager deployments delete ${INFRA_ID}-bootstrap
You can create worker machines in Google Cloud Platform (GCP) for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
In this example, you manually launch one instance by using the Deployment
Manager template. Additional instances can be launched by including additional
resources of type 06_worker.py
in the file.
If you do not use the provided Deployment Manager template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
Configure a GCP account.
Generate the Ignition config files for your cluster.
Create and configure a VPC and associated subnets in GCP.
Create and configure networking and load balancers in GCP.
Create control plane and compute roles.
Create the bootstrap machine.
Create the control plane machines.
Copy the template from the Deployment Manager template for worker machines
section of this topic and save it as 06_worker.py
on your computer. This
template describes the worker machines that your cluster requires.
Export the following variables needed by the resource definition:
$ export COMPUTE_SUBNET=`gcloud compute networks subnets describe ${INFRA_ID}-worker-subnet --region=${REGION} --format json | jq -r .selfLink` $ export WORKER_SERVICE_ACCOUNT_EMAIL=`gcloud iam service-accounts list | grep "^${INFRA_ID}-worker-node " | awk '{print $2}'` $ export WORKER_IGNITION=`cat worker.ign`
Create a 06_worker.yaml
resource definition file:
$ cat <<EOF >06_worker.yaml imports: - path: 06_worker.py resources: - name: 'w-a-0' (1) type: 06_worker.py properties: infra_id: '${INFRA_ID}' (2) zone: '${ZONE_0}' (3) compute_subnet: '${COMPUTE_SUBNET}' (4) image: '${CLUSTER_IMAGE}' (5) machine_type: 'n1-standard-4' (6) root_volume_size: '128' service_account_email: '${WORKER_SERVICE_ACCOUNT_EMAIL}' (7) ignition: '${WORKER_IGNITION}' (8) EOF
1 | name is the name of the worker machine, for example w-a-0 . |
2 | infra_id is the INFRA_ID infrastructure name from the extraction step. |
3 | zone is the zone to deploy the worker machine into, for example us-east1-b . |
4 | compute_subnet is the selfLink URL to the compute subnet. |
5 | image is the selfLink URL to the RHCOS image. |
6 | machine_type is the machine type of the instance, for example n1-standard-4 . |
7 | service_account_email is the email address for the worker service account that you created. |
8 | ignition is the contents of the worker.ign file. |
Optional: If you want to launch additional instances, include additional
resources of type 06_worker.py
in your 06_worker.yaml
resource definition
file.
Create the deployment by using the gcloud
CLI:
$ gcloud deployment-manager deployments create ${INFRA_ID}-worker --config 06_worker.yaml
You can use the following Deployment Manager template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
06_worker.py
Deployment Manager templatedef GenerateConfig(context):
resources = [{
'name': context.properties['infra_id'] + '-' + context.env['name'],
'type': 'compute.v1.instance',
'properties': {
'disks': [{
'autoDelete': True,
'boot': True,
'initializeParams': {
'diskSizeGb': context.properties['root_volume_size'],
'sourceImage': context.properties['image']
}
}],
'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'],
'metadata': {
'items': [{
'key': 'user-data',
'value': context.properties['ignition']
}]
},
'networkInterfaces': [{
'subnetwork': context.properties['compute_subnet']
}],
'serviceAccounts': [{
'email': context.properties['service_account_email'],
'scopes': ['https://www.googleapis.com/auth/cloud-platform']
}],
'tags': {
'items': [
context.properties['infra_id'] + '-worker',
]
},
'zone': context.properties['zone']
}
}]
return {'resources': resources}
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a
command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command-line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command-line interface section, select Windows from the drop-down menu and click Download command-line tools.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
Select your infrastructure provider, and, if applicable, your installation type.
In the Command-line interface section, select MacOS from the drop-down menu and click Download command-line tools.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OpenShift Container Platform installation.
Deploy an OpenShift Container Platform cluster.
Install the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami system:admin
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
You added machines to your cluster.
Confirm that the cluster recognizes the machines:
# oc get nodes NAME STATUS ROLES AGE VERSION master-01.example.com Ready master 40d v1.17.1 master-02.example.com Ready master 40d v1.17.1 master-03.example.com Ready master 40d v1.17.1 worker-01.example.com Ready worker 40d v1.17.1 worker-02.example.com Ready worker 40d v1.17.1
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see the client requests with the Pending
or Approved
status for each machine that you added to the cluster:
$ oc get csr NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending
status, approve the CSRs for your cluster machines:
Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After you approve the initial CSRs, the subsequent node client CSRs are automatically approved by the cluster |
To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> (1)
1 | <csr_name> is the name of a CSR from the list of current CSRs. |
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
NAME AGE REQUESTOR CONDITION
csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
...
If the remaining CSRs are not approved, and are in the Pending
status, approve the CSRs for your cluster machines:
To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> (1)
1 | <csr_name> is the name of a CSR from the list of current CSRs. |
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the Ready
status. Verify this by running the following command:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
master-0 Ready master 73m v1.20.0
master-1 Ready master 73m v1.20.0
master-2 Ready master 74m v1.20.0
worker-0 Ready worker 11m v1.20.0
worker-1 Ready worker 11m v1.20.0
It can take a few minutes after approval of the server CSRs for the machines to transition to the |
For more information on CSRs, see Certificate Signing Requests.
If you removed the DNS Zone configuration when creating Kubernetes manifests and
generating Ignition configs, you must manually create DNS records that point at
the ingress load balancer. You can create either a wildcard
*.apps.{baseDomain}.
or specific records. You can use A, CNAME, and other
records per your requirements.
Configure a GCP account.
Remove the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs.
Create and configure a VPC and associated subnets in GCP.
Create and configure networking and load balancers in GCP.
Create control plane and compute roles.
Create the bootstrap machine.
Create the control plane machines.
Create the worker machines.
Wait for the Ingress router to create a load balancer and populate the EXTERNAL-IP
field:
$ oc -n openshift-ingress get service router-default NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE router-default LoadBalancer 172.30.18.154 35.233.157.184 80:32288/TCP,443:31215/TCP 98
Add the A record to your public and private zones:
$ export ROUTER_IP=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'` $ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud dns record-sets transaction add ${ROUTER_IP} --name \*.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME} $ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction add ${ROUTER_IP} --name \*.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${INFRA_ID}-private-zone $ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone
If you prefer to add explicit domains instead of using a wildcard, you can create entries for each of the cluster’s current routes:
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes oauth-openshift.apps.your.cluster.domain.example.com console-openshift-console.apps.your.cluster.domain.example.com downloads-openshift-console.apps.your.cluster.domain.example.com alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com grafana-openshift-monitoring.apps.your.cluster.domain.example.com prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com
After you start the OpenShift Container Platform installation on Google Cloud Platform (GCP) user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned GCP infrastructure.
Install the oc
CLI and log in.
Complete the cluster installation:
$ ./openshift-install --dir=<installation_directory> wait-for install-complete (1) INFO Waiting up to 30m0s for the cluster to initialize...
1 | For <installation_directory> , specify the path to the directory that you
stored the installation files in. |
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending |
Observe the running state of your cluster.
Run the following command to view the current cluster version and status:
$ oc get clusterversion NAME VERSION AVAILABLE PROGRESSING SINCE STATUS version False True 24m Working towards 4.4.3-0: 99% complete
Run the following command to view the Operators managed on the control plane by the Cluster Version Operator (CVO):
$ oc get clusteroperators NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.4.3 True False False 7m56s cloud-credential 4.4.3 True False False 31m cluster-autoscaler 4.4.3 True False False 16m console 4.4.3 True False False 10m csi-snapshot-controller 4.4.3 True False False 16m dns 4.4.3 True False False 22m etcd 4.4.3 False False False 25s image-registry 4.4.3 True False False 16m ingress 4.4.3 True False False 16m insights 4.4.3 True False False 17m kube-apiserver 4.4.3 True False False 19m kube-controller-manager 4.4.3 True False False 20m kube-scheduler 4.4.3 True False False 20m kube-storage-version-migrator 4.4.3 True False False 16m machine-api 4.4.3 True False False 22m machine-config 4.4.3 True False False 22m marketplace 4.4.3 True False False 16m monitoring 4.4.3 True False False 10m network 4.4.3 True False False 23m node-tuning 4.4.3 True False False 23m openshift-apiserver 4.4.3 True False False 17m openshift-controller-manager 4.4.3 True False False 15m openshift-samples 4.4.3 True False False 16m operator-lifecycle-manager 4.4.3 True False False 22m operator-lifecycle-manager-catalog 4.4.3 True False False 22m operator-lifecycle-manager-packageserver 4.4.3 True False False 18m service-ca 4.4.3 True False False 23m service-catalog-apiserver 4.4.3 True False False 23m service-catalog-controller-manager 4.4.3 True False False 23m storage 4.4.3 True False False 17m
Run the following command to view your cluster pods:
$ oc get pods --all-namespaces NAMESPACE NAME READY STATUS RESTARTS AGE kube-system etcd-member-ip-10-0-3-111.us-east-2.compute.internal 1/1 Running 0 35m kube-system etcd-member-ip-10-0-3-239.us-east-2.compute.internal 1/1 Running 0 37m kube-system etcd-member-ip-10-0-3-24.us-east-2.compute.internal 1/1 Running 0 35m openshift-apiserver-operator openshift-apiserver-operator-6d6674f4f4-h7t2t 1/1 Running 1 37m openshift-apiserver apiserver-fm48r 1/1 Running 0 30m openshift-apiserver apiserver-fxkvv 1/1 Running 0 29m openshift-apiserver apiserver-q85nm 1/1 Running 0 29m ... openshift-service-ca-operator openshift-service-ca-operator-66ff6dc6cd-9r257 1/1 Running 0 37m openshift-service-ca apiservice-cabundle-injector-695b6bcbc-cl5hm 1/1 Running 0 35m openshift-service-ca configmap-cabundle-injector-8498544d7-25qn6 1/1 Running 0 35m openshift-service-ca service-serving-cert-signer-6445fc9c6-wqdqn 1/1 Running 0 35m openshift-service-catalog-apiserver-operator openshift-service-catalog-apiserver-operator-549f44668b-b5q2w 1/1 Running 0 32m openshift-service-catalog-controller-manager-operator openshift-service-catalog-controller-manager-operator-b78cr2lnm 1/1 Running 0 31m
When the current cluster version is AVAILABLE
, the installation is complete.
If necessary, you can opt out of remote health reporting.