VPC
In OKD version 4.11, you can install a cluster on Amazon Web Services (AWS) into the following secret regions:
Secret Commercial Cloud Services (SC2S)
Commercial Cloud Services (C2S)
To configure a cluster in either region, you change parameters in the install config.yaml
file before you install the cluster.
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multifactor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program. |
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the kube-system
namespace, you can manually create and maintain IAM credentials.
The following AWS secret partitions are supported:
us-isob-east-1
(SC2S)
us-iso-east-1
(C2S)
The maximum supported MTU in an AWS SC2S and C2S Regions is not the same as AWS commercial. For more information about configuring MTU during installation, see the Cluster Network Operator configuration object section in Installing a cluster on AWS with network customizations |
Red Hat does not publish a Fedora CoreOS (FCOS) Amzaon Machine Image for the AWS Secret and Top Secret Regions.
Before you can install the cluster, you must:
Upload a custom FCOS AMI.
Manually create the installation configuration file (install-config.yaml
).
Specify the AWS region, and the accompanying custom AMI, in the installation configuration file.
You cannot use the OKD installation program to create the installation configuration file. The installer does not list an AWS region without native support for an FCOS AMI.
You must also define a custom CA certificate in the |
You can deploy a private OKD cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.
Public zones are not supported in Route 53 in an AWS Top Secret Region. Therefore, clusters must be private if they are deployed to an AWS Top Secret Region. |
By default, OKD is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private. |
To deploy a private cluster, you must:
Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Deploy from a machine that has access to:
The API services for the cloud to which you provision.
The hosts on the network that you provision.
The internet to obtain installation media.
You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
The cluster still requires access to internet to access the AWS APIs.
The following items are not required or created when you install a private cluster:
Public subnets
Public load balancers, which support public ingress
A public Route 53 zone that matches the baseDomain
for the cluster
The installation program does use the baseDomain
that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
The ability to add public functionality to a private cluster is limited.
You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from the internet on 6443 (Kubernetes API port).
If you use a public Service type load balancer, you must tag a public subnet in each availability zone with kubernetes.io/cluster/<cluster-infra-id>: shared
so that AWS can use them to create public load balancers.
In OKD 4.11, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OKD into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
The installation program no longer creates the following components:
Internet gateways
NAT gateways
Subnets
Route tables
VPCs
VPC DHCP options
VPC endpoints
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail. |
If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
The installation program cannot:
Subdivide network ranges for the cluster to use.
Set route tables for the subnets.
Set VPC options like DHCP.
You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
Your VPC must meet the following characteristics:
The VPC must not use the kubernetes.io/cluster/.*: owned
, Name
, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify. You cannot use a Name
tag, because it overlaps with the EC2 Name
field and the installation fails.
You must enable the enableDnsSupport
and enableDnsHostnames
attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone
field in the install-config.yaml
file.
A cluster in an SC2S or C2S Region is unable to reach the public IP addresses for the EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during the installation, the following configuration options are available:
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
elasticloadbalancing.<region>.sc2s.sgov.gov
ec2.<region>.sc2s.sgov.gov
s3.<region>.sc2s.sgov.gov
elasticloadbalancing.<region>.c2s.ic.gov
ec2.<region>.c2s.ic.gov
s3.<region>.c2s.ic.gov
With this option, network traffic remains private between your VPC and the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet traffic goes through the proxy to reach the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints. Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
elasticloadbalancing.<region>.sc2s.sgov.gov
ec2.<region>.sc2s.sgov.gov
s3.<region>.sc2s.sgov.gov
elasticloadbalancing.<region>.c2s.ic.gov
ec2.<region>.c2s.ic.gov
s3.<region>.c2s.ic.gov
When configuring the proxy in the install-config.yaml
file, add these endpoints to the noProxy
field. With this option, the proxy prevents the cluster from accessing the internet directly. However, network traffic remains private between your VPC and the required AWS services.
You must provide a suitable VPC and subnets that allow communication to your machines.
Component | AWS type | Description | |
---|---|---|---|
VPC |
|
You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3. |
|
Public subnets |
|
Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules. |
|
Internet gateway |
|
You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios. |
|
Network access control |
|
You must allow the VPC to access the following ports: |
|
Port |
Reason |
||
|
Inbound HTTP traffic |
||
|
Inbound HTTPS traffic |
||
|
Inbound SSH traffic |
||
|
Inbound ephemeral traffic |
||
|
Outbound ephemeral traffic |
||
Private subnets |
|
Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them. |
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
All the subnets that you specify exist.
You provide private subnets.
The subnet CIDRs belong to the machine CIDR that you specified.
You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OKD cluster from a VPC, the kubernetes.io/cluster/.*: shared
tag is removed from the subnets that it used.
Starting with OKD 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
If you deploy OKD to an existing network, the isolation of cluster services is reduced in the following ways:
You can install multiple OKD clusters in the same VPC.
ICMP ingress is allowed from the entire network.
TCP 22 ingress (SSH) is allowed to the entire network.
Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Fedora CoreOS (FCOS) Amazon Machine Image (AMI) that belongs to that region.
You configured an AWS account.
You created an Amazon S3 bucket with the required IAM service role.
You uploaded your FCOS VMDK file to Amazon S3.
You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
Export your AWS profile as an environment variable:
$ export AWS_PROFILE=<aws_profile> (1)
Export the region to associate with your custom AMI as an environment variable:
$ export AWS_DEFAULT_REGION=<aws_region> (1)
Export the version of FCOS you uploaded to Amazon S3 as an environment variable:
$ export RHCOS_VERSION=<version> (1)
1 | The FCOS VMDK version, like 4.11.0 . |
Export the Amazon S3 bucket name as an environment variable:
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>
Create the containers.json
file and define your FCOS VMDK file:
$ cat <<EOF > containers.json
{
"Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
"Format": "vmdk",
"UserBucket": {
"S3Bucket": "${VMIMPORT_BUCKET_NAME}",
"S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
}
}
EOF
Import the FCOS disk as an Amazon EBS snapshot:
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
--description "<description>" \ (1)
--disk-container "file://<file_path>/containers.json" (2)
1 | The description of your FCOS disk being imported, like
rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64 . |
2 | The file path to the JSON file describing your FCOS disk. The JSON file should contain your Amazon S3 bucket name and key. |
Check the status of the image import:
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
{
"ImportSnapshotTasks": [
{
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"ImportTaskId": "import-snap-fh6i8uil",
"SnapshotTaskDetail": {
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"DiskImageSize": 819056640.0,
"Format": "VMDK",
"SnapshotId": "snap-06331325870076318",
"Status": "completed",
"UserBucket": {
"S3Bucket": "external-images",
"S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk"
}
}
}
]
}
Copy the SnapshotId
to register the image.
Create a custom FCOS AMI from the FCOS snapshot:
$ aws ec2 register-image \
--region ${AWS_DEFAULT_REGION} \
--architecture x86_64 \ (1)
--description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (2)
--ena-support \
--name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (3)
--virtualization-type hvm \
--root-device-name '/dev/xvda' \
--block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' (4)
1 | The FCOS VMDK architecture type, like x86_64 ,
s390x , or ppc64le . |
2 | The Description from the imported snapshot. |
3 | The name of the FCOS AMI. |
4 | The SnapshotID from the imported snapshot. |
To learn more about these APIs, see the AWS documentation for importing snapshots and creating EBS-backed AMIs.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_ed25519 , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
If you plan to install an OKD cluster that uses fips validated or Modules In Process cryptographic libraries on the |
View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the ~/.ssh/id_ed25519.pub
public key:
$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather
command.
On some distributions, default SSH private key identities such as |
If the ssh-agent
process is not already running for your local user, start it as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in fips mode, only use fips-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA. |
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519 |
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
When you install OKD, provide the SSH public key to the installation program.
Before you install OKD, download the installation file on a local computer.
You have a computer that runs Linux or macOS, with 500 MB of local disk space.
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster. |
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider. |
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.
If you do not use the pull secret from the Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
Installing the cluster requires that you manually generate the installation configuration file.
You have uploaded a custom RHCOS AMI.
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
Customize the sample install-config.yaml
file template that is provided and save
it in the <installation_directory>
.
You must name this configuration file |
Back up the install-config.yaml
file so that you can use it to install
multiple clusters.
The |
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the |
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the |
String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource |
Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: |
Object |
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster. |
Parameter | Description | Values | ||
---|---|---|---|---|
|
The configuration for the cluster network. |
Object
|
||
|
The cluster network provider Container Network Interface (CNI) cluster network provider to install. |
Either |
||
|
The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation.
The prefix length for an IPv4 block is between |
||
|
The subnet prefix length to assign to each individual node. For example, if |
A subnet prefix. The default value is |
||
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. |
An array with an IP address block in CIDR format. For example:
|
||
|
The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use |
An IP network block in CIDR notation. For example,
|
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
|
A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. |
String |
||
|
Controls the installation of optional core cluster components. You can reduce the footprint of your OKD cluster by disabling optional components. |
String array |
||
|
Selects an initial set of optional capabilities to enable. Valid values are |
String |
||
|
Extends the set of optional capabilities beyond what you specify in |
String array |
||
|
Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OKD process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OKD cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time. |
|
||
|
The configuration for the machines that comprise the compute nodes. |
Array of |
||
|
Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are |
String |
||
|
Whether to enable or disable simultaneous multithreading, or
|
|
||
|
Required if you use |
|
||
|
Required if you use |
|
||
|
The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
||
|
The configuration for the machines that comprise the control plane. |
Array of |