$ oc get infrastructure cluster -o jsonpath='{.status.platform}'
You can create a different machine set to serve a specific purpose in your OKD cluster on Google Cloud Platform (GCP). For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.
You can use the advanced machine management and scaling capabilities only in clusters where the Machine API is operational. Clusters with user-provisioned infrastructure require additional validation and configuration to use the Machine API. Clusters with the infrastructure platform type To view the platform type for your cluster, run the following command:
|
This sample YAML defines a machine set that runs in Google Cloud Platform (GCP) and creates nodes that are labeled with
node-role.kubernetes.io/<role>: ""
.
In this sample, <infrastructure_id>
is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and
<role>
is the node label to add.
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
name: <infrastructure_id>-w-a
namespace: openshift-machine-api
spec:
replicas: 1
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a
template:
metadata:
creationTimestamp: null
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machine-role: <role> (2)
machine.openshift.io/cluster-api-machine-type: <role>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-w-a
spec:
metadata:
labels:
node-role.kubernetes.io/<role>: ""
providerSpec:
value:
apiVersion: gcpprovider.openshift.io/v1beta1
canIPForward: false
credentialsSecret:
name: gcp-cloud-credentials
deletionProtection: false
disks:
- autoDelete: true
boot: true
image: <path_to_image> (3)
labels: null
sizeGb: 128
type: pd-ssd
gcpMetadata: (4)
- key: <custom_metadata_key>
value: <custom_metadata_value>
kind: GCPMachineProviderSpec
machineType: n1-standard-4
metadata:
creationTimestamp: null
networkInterfaces:
- network: <infrastructure_id>-network
subnetwork: <infrastructure_id>-worker-subnet
projectID: <project_name> (5)
region: us-central1
serviceAccounts:
- email: <infrastructure_id>-w@<project_name>.iam.gserviceaccount.com
scopes:
- https://www.googleapis.com/auth/cloud-platform
tags:
- <infrastructure_id>-worker
userDataSecret:
name: worker-user-data
zone: us-central1-a
1 | For <infrastructure_id> , specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
|
2 | For <node> , specify the node label to add. |
3 | Specify the path to the image that is used in current compute machine sets. If you have the OpenShift CLI installed, you can obtain the path to the image by running the following command:
To use a GCP Marketplace image, specify the offer to use:
|
4 | Optional: Specify custom metadata in the form of a key:value pair. For example use cases, see the GCP documentation for setting custom metadata. |
5 | For <project_name> , specify the name of the GCP project that you use for your cluster. |
In addition to the compute machine sets created by the installation program, you can create your own to dynamically manage the machine compute resources for specific workloads of your choice.
Deploy an OKD cluster.
Install the OpenShift CLI (oc
).
Log in to oc
as a user with cluster-admin
permission.
Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml
.
Ensure that you set the <clusterID>
and <role>
parameter values.
Optional: If you are not sure which value to set for a specific field, you can check an existing compute machine set from your cluster.
To list the compute machine sets in your cluster, run the following command:
$ oc get machinesets -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
To view values of a specific compute machine set custom resource (CR), run the following command:
$ oc get machineset <machineset_name> \
-n openshift-machine-api -o yaml
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
name: <infrastructure_id>-<role> (2)
namespace: openshift-machine-api
spec:
replicas: 1
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machine-role: <role>
machine.openshift.io/cluster-api-machine-type: <role>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
spec:
providerSpec: (3)
...
1 | The cluster infrastructure ID. | ||
2 | A default node label.
|
||
3 | The values in the <providerSpec> section of the compute machine set CR are platform-specific. For more information about <providerSpec> parameters in the CR, see the sample compute machine set CR configuration for your provider. |
Create a MachineSet
CR by running the following command:
$ oc create -f <file_name>.yaml
View the list of compute machine sets by running the following command:
$ oc get machineset -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
When the new machine set is available, the DESIRED
and CURRENT
values match. If the machine set is not available, wait a few minutes and run the command again.
You can save on costs by creating a machine set running on GCP that deploys machines as non-guaranteed preemptible VM instances. Preemptible VM instances utilize excess Compute Engine capacity and are less expensive than normal instances. You can use preemptible VM instances for workloads that can tolerate interruptions, such as batch or stateless, horizontally scalable workloads.
GCP Compute Engine can terminate a preemptible VM instance at any time. Compute Engine sends a preemption notice to the user indicating that an interruption will occur in 30 seconds. OKD begins to remove the workloads from the affected instances when Compute Engine issues the preemption notice. An ACPI G3 Mechanical Off signal is sent to the operating system after 30 seconds if the instance is not stopped. The preemptible VM instance is then transitioned to a TERMINATED
state by Compute Engine.
Interruptions can occur when using preemptible VM instances for the following reasons:
There is a system or maintenance event
The supply of preemptible VM instances decreases
The instance reaches the end of the allotted 24-hour period for preemptible VM instances
When GCP terminates an instance, a termination handler running on the preemptible VM instance node deletes the machine resource. To satisfy the machine set replicas
quantity, the machine set creates a machine that requests a preemptible VM instance.
You can launch a preemptible VM instance on GCP by adding preemptible
to your machine set YAML file.
Add the following line under the providerSpec
field:
providerSpec:
value:
preemptible: true
If preemptible
is set to true
, the machine is labelled as an interruptable-instance
after the instance is launched.
Google Cloud Platform (GCP) Compute Engine allows users to supply an encryption key to encrypt data on disks at rest. The key is used to encrypt the data encryption key, not to encrypt the customer’s data. By default, Compute Engine encrypts this data by using Compute Engine keys.
You can enable encryption with a customer-managed key by using the Machine API. You must first create a KMS key and assign the correct permissions to a service account. The KMS key name, key ring name, and location are required to allow a service account to use your key.
If you do not want to use a dedicated service account for the KMS encryption, the Compute Engine default service account is used instead. You must grant the default service account permission to access the keys if you do not use a dedicated service account. The Compute Engine default service account name follows the |
Run the following command with your KMS key name, key ring name, and location to allow a specific service account to use your KMS key and to grant the service account the correct IAM role:
gcloud kms keys add-iam-policy-binding <key_name> \
--keyring <key_ring_name> \
--location <key_ring_location> \
--member "serviceAccount:service-<project_number>@compute-system.iam.gserviceaccount.com” \
--role roles/cloudkms.cryptoKeyEncrypterDecrypter
Configure the encryption key under the providerSpec
field in your machine set YAML file. For example:
providerSpec:
value:
# ...
disks:
- type:
# ...
encryptionKey:
kmsKey:
name: machine-encryption-key (1)
keyRing: openshift-encrpytion-ring (2)
location: global (3)
projectID: openshift-gcp-project (4)
kmsKeyserviceAccount: openshift-service-account@openshift-gcp-project.iam.gserviceaccount.com (5)
1 | The name of the customer-managed encryption key that is used for the disk encryption. |
2 | The name of the KMS key ring that the KMS key belongs to. |
3 | The GCP location in which the KMS key ring exists. |
4 | Optional: The ID of the project in which the KMS key ring exists. If a project ID is not set, the machine set projectID in which the machine set was created is used. |
5 | Optional: The service account that is used for the encryption request for the given KMS key. If a service account is not set, the Compute Engine default service account is used. |
After a new machine is created by using the updated providerSpec
object configuration, the disk encryption key is encrypted with the KMS key.