$ oc adm cordon <node1>
As an administrator, you can perform a number of tasks to make your clusters more efficient.
Evacuating pods allows you to migrate all or selected pods from a given node or nodes.
You can only evacuate pods backed by a replication controller. The replication controller creates new pods on other nodes and removes the existing pods from the specified node(s).
Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the pods with the specified label will be evacuated.
Mark the nodes unschedulable before performing the pod evacuation.
Mark the node as unschedulable:
$ oc adm cordon <node1>
node/<node1> cordoned
Check that the node status is Ready,SchedulingDisabled
:
$ oc get node <node1>
NAME STATUS ROLES AGE VERSION
<node1> Ready,SchedulingDisabled worker 1d v1.24.0
Evacuate the pods using one of the following methods:
Evacuate all or selected pods on one or more nodes:
$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]
Force the deletion of bare pods using the --force
option. When set to
true
, deletion continues even if there are pods not managed by a replication
controller, replica set, job, daemon set, or stateful set:
$ oc adm drain <node1> <node2> --force=true
Set a period of time in seconds for each pod to
terminate gracefully, use --grace-period
. If negative, the default value specified in the pod will
be used:
$ oc adm drain <node1> <node2> --grace-period=-1
Ignore pods managed by daemon sets using the --ignore-daemonsets
flag set to true
:
$ oc adm drain <node1> <node2> --ignore-daemonsets=true
Set the length of time to wait before giving up using the --timeout
flag. A
value of 0
sets an infinite length of time:
$ oc adm drain <node1> <node2> --timeout=5s
Delete pods even if there are pods using emptyDir using the --delete-local-data
flag set to true
. Local data is deleted when the node
is drained:
$ oc adm drain <node1> <node2> --delete-local-data=true
List objects that will be migrated without actually performing the evacuation,
using the --dry-run
option set to true
:
$ oc adm drain <node1> <node2> --dry-run=true
Instead of specifying specific node names (for example, <node1> <node2>
), you
can use the --selector=<node_selector>
option to evacuate pods on selected
nodes.
Mark the node as schedulable when done.
$ oc adm uncordon <node1>
You can update any label on a node.
Node labels are not persisted after a node is deleted even if the node is backed up by a Machine.
Any change to a |
The following command adds or updates labels on a node:
$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>
For example:
$ oc label nodes webconsole-7f7f6 unhealthy=true
The following command updates all pods in the namespace:
$ oc label pods --all <key_1>=<value_1>
For example:
$ oc label pods --all status=unhealthy
By default, healthy nodes with a Ready
status are
marked as schedulable, meaning that new pods are allowed for placement on the
node. Manually marking a node as unschedulable blocks any new pods from being
scheduled on the node. Existing pods on the node are not affected.
The following command marks a node or nodes as unschedulable:
$ oc adm cordon <node>
For example:
$ oc adm cordon node1.example.com
node/node1.example.com cordoned
NAME LABELS STATUS
node1.example.com kubernetes.io/hostname=node1.example.com Ready,SchedulingDisabled
The following command marks a currently unschedulable node or nodes as schedulable:
$ oc adm uncordon <node1>
Alternatively, instead of specifying specific node names (for example, <node>
), you can use the --selector=<node_selector>
option to mark selected
nodes as schedulable or unschedulable.
You can configure control plane nodes (also known as the master nodes) to be schedulable, meaning that new pods are allowed for placement on the master nodes. By default, control plane nodes are not schedulable.
You can set the masters to be schedulable, but must retain the worker nodes.
You can deploy OpenShift Container Platform with no worker nodes on a bare metal cluster. In this case, the control plane nodes are marked schedulable by default. |
You can allow or disallow control plane nodes to be schedulable by configuring the mastersSchedulable
field.
+
When you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become worker nodes. |
Edit the schedulers.config.openshift.io
resource.
$ oc edit schedulers.config.openshift.io cluster
Configure the mastersSchedulable
field.
apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
creationTimestamp: "2019-09-10T03:04:05Z"
generation: 1
name: cluster
resourceVersion: "433"
selfLink: /apis/config.openshift.io/v1/schedulers/cluster
uid: a636d30a-d377-11e9-88d4-0a60097bee62
spec:
mastersSchedulable: false (1)
policy:
name: ""
status: {}
1 | Set to true to allow control plane nodes to be schedulable, or false to
disallow control plane nodes to be schedulable. |
Save the file to apply the changes.
When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other available nodes. You must delete local manifest pods.
To delete a node from the OpenShift Container Platform cluster, edit the appropriate MachineSet
object:
If you are running cluster on bare metal, you cannot delete a node by editing
|
View the machine sets that are in the cluster:
$ oc get machinesets -n openshift-machine-api
The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.
Scale the machine set:
$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api
For more information on scaling your cluster using a machine set, see Manually scaling a machine set.
When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other available nodes. You must delete local manifest pods.
Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the following steps:
Mark the node as unschedulable:
$ oc adm cordon <node_name>
Drain all pods on the node:
$ oc adm drain <node_name> --force=true
This step might fail if the node is offline or unresponsive. Even if the node does not respond, it might still be running a workload that writes to shared storage. To avoid data corruption, power down the physical hardware before you proceed.
Delete the node from the cluster:
$ oc delete node <node_name>
Although the node object is now deleted from the cluster, it can still rejoin the cluster after reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you must decommission the node.
If you powered down the physical hardware, turn it back on so that the node can rejoin the cluster.
OpenShift Container Platform allows you to enable and disable an SELinux boolean on a Red Hat Enterprise Linux CoreOS (RHCOS) node. The following procedure explains how to modify SELinux booleans on nodes using the Machine Config Operator (MCO). This procedure uses container_manage_cgroup
as the example boolean. You can modify this value to whichever boolean you need.
You have installed the OpenShift CLI (oc).
Create a new YAML file with a MachineConfig
object, displayed in the following example:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-worker-setsebool
spec:
config:
ignition:
version: 2.2.0
systemd:
units:
- contents: |
[Unit]
Description=Set SELinux booleans
Before=kubelet.service
[Service]
Type=oneshot
ExecStart=/sbin/setsebool container_manage_cgroup=on
RemainAfterExit=true
[Install]
WantedBy=multi-user.target graphical.target
enabled: true
name: setsebool.service
Create the new MachineConfig
object by running the following command:
$ oc create -f 99-worker-setsebool.yaml
Applying any changes to the |
In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This should only be done with caution and clear understanding of the implications of the arguments you set.
Improper use of kernel arguments can result in your systems becoming unbootable. |
Examples of kernel arguments you could set include:
enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including labeling objects and emitting access denial entries in the logs, but it does not actually deny any operations. While not supported for production systems, permissive mode can be helpful for debugging.
nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple logical threads for each CPU. You could consider nosmt
in multi-tenant environments to reduce risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over performance.
See Kernel.org kernel parameters for a list and descriptions of kernel arguments.
In the following procedure, you create a MachineConfig
object that identifies:
A set of machines to which you want to add the kernel argument. In this case, machines with a worker role.
Kernel arguments that are appended to the end of the existing kernel arguments.
A label that indicates where in the list of machine configs the change is applied.
Have administrative privilege to a working OpenShift Container Platform cluster.
List existing MachineConfig
objects for your OpenShift Container Platform cluster to determine how to
label your machine config:
$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
00-worker 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-master-container-runtime 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-master-kubelet 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-worker-container-runtime 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-worker-kubelet 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
99-master-generated-registries 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
99-master-ssh 3.1.0 77m
99-worker-generated-registries 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
99-worker-ssh 3.1.0 77m
rendered-master-0f314bb55448c47e6776e16e608c5912 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 42m
rendered-master-c7761e6162e6c9538b0cdd7eef567d38 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
Create a MachineConfig
object file that identifies the kernel argument (for example, 05-worker-kernelarg-selinuxpermissive.yaml
)
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker(1)
name: 05-worker-kernelarg-selinuxpermissive(2)
spec:
config:
ignition:
version: 3.1.0
kernelArguments:
- enforcing=0(3)
1 | Applies the new kernel argument only to worker nodes. |
2 | Named to identify where it fits among the machine configs (05) and what it does (adds a kernel argument to configure SELinux permissive mode). |
3 | Identifies the exact kernel argument as enforcing=0 . |
Create the new machine config:
$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml
Check the machine configs to see that the new one was added:
$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
00-worker 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-master-container-runtime 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-master-kubelet 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-worker-container-runtime 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
01-worker-kubelet 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
05-worker-kernelarg-selinuxpermissive 3.1.0 105s
99-master-generated-registries 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
99-master-ssh 3.1.0 77m
99-worker-generated-registries 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
99-worker-ssh 3.1.0 77m
rendered-master-0f314bb55448c47e6776e16e608c5912 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 42m
rendered-master-c7761e6162e6c9538b0cdd7eef567d38 5ce9351ceb24e721e28cd82de3a44fc7cc27137c 3.1.0 65m
Check the nodes:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.19.0
ip-10-0-136-243.ec2.internal Ready master 34m v1.19.0
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.19.0
ip-10-0-142-249.ec2.internal Ready master 34m v1.19.0
ip-10-0-153-11.ec2.internal Ready worker 28m v1.19.0
ip-10-0-153-150.ec2.internal Ready master 34m v1.19.0
You can see that scheduling on each worker node is disabled as the change is being applied.
Check that the kernel argument worked by going to one of the worker nodes and listing
the kernel command line arguments (in /proc/cmdline
on the host):
$ oc debug node/ip-10-0-141-105.ec2.internal
Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`
sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0
sh-4.2# exit
You should see the enforcing=0
argument added to the other kernel arguments.
For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet.