$ mkdir -p $HOME/projects/memcached-operator
Operator developers can take advantage of Ansible support in the Operator SDK to build an example Ansible-based Operator for Memcached, a distributed key-value store, and manage its lifecycle. This tutorial walks through the following process:
Create a Memcached deployment
Ensure that the deployment size is the same as specified by the Memcached
custom resource (CR) spec
Update the Memcached
CR status using the status writer with the names of the memcached
pods
This process is accomplished by using two centerpieces of the Operator Framework:
The operator-sdk
CLI tool and controller-runtime
library API
Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster
This tutorial goes into greater detail than Getting started with Operator SDK for Ansible-based Operators. |
Ansible version v2.9.0
Ansible Runner version v1.1.0+
Ansible Runner HTTP Event Emitter plug-in version v1.0.0+
OpenShift Python client version v0.11.2+
Logged into an OpenShift Container Platform 4.7 cluster with oc
with an account that has cluster-admin
permissions
To allow the cluster pull the image, the repository where you push your image must be set as public, or you must configure an image pull secret.
Use the Operator SDK CLI to create a project called memcached-operator
.
Create a directory for the project:
$ mkdir -p $HOME/projects/memcached-operator
Change to the directory:
$ cd $HOME/projects/memcached-operator
Run the operator-sdk init
command
with the ansible
plug-in
to initialize the project:
$ operator-sdk init \
--plugins=ansible \
--domain=example.com
Among the files generated by the operator-sdk init
command is a Kubebuilder PROJECT
file. Subsequent operator-sdk
commands, as well as help
output, that are run from the project root read this file and are aware that the project type is Ansible. For example:
domain: example.com
layout: ansible.sdk.operatorframework.io/v1
projectName: memcached-operator
version: 3-alpha
Use the Operator SDK CLI to create a Memcached API.
Run the following command to create an API with group cache
, version, v1
, and kind Memcached
:
$ operator-sdk create api \
--group cache \
--version v1 \
--kind Memcached \
--generate-role (1)
1 | Generates an Ansible role for the API. |
After creating the API, your Operator project updates with the following structure:
Includes a sample Memcached
resource
Program that reconciles the state of the cluster to the desired state by using:
A reconciler, either an Ansible role or playbook
A watches.yaml
file, which connects the Memcached
resource to the memcached
Ansible role
Update your Operator project to provide the reconcile logic, in the form of an Ansible role, which runs every time a Memcached
resource is created, updated, or deleted.
Update the roles/memcached/tasks/main.yml
file with the following structure:
---
- name: start memcached
community.kubernetes.k8s:
definition:
kind: deployment
apiVersion: apps/v1
metadata:
name: '{{ ansible_operator_meta.name }}-memcached'
namespace: '{{ ansible_operator_meta.namespace }}'
spec:
replicas: "{{size}}"
selector:
matchLabels:
app: memcached
template:
metadata:
labels:
app: memcached
spec:
containers:
- name: memcached
command:
- memcached
- -m=64
- -o
- modern
- -v
image: "docker.io/memcached:1.4.36-alpine"
ports:
- containerPort: 11211
This memcached
role ensures a memcached
deployment exist and sets the deployment size.
Set default values for variables used in your Ansible role by editing the roles/memcached/defaults/main.yml
file:
---
# defaults file for Memcached
size: 1
Update the Memcached
sample resource in the config/samples/cache_v1_memcached.yaml
file with the following structure:
apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
spec:
size: 3
The key-value pairs in the custom resource (CR) spec are passed to Ansible as extra variables.
The names of all variables in the You can disable this case conversion by setting the |
There are three ways you can use the Operator SDK CLI to build and run your Operator:
Run locally outside the cluster as a Go program.
Run as a deployment on the cluster.
Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.
You can run your Operator project as a Go program outside of the cluster. This is useful for development purposes to speed up deployment and testing.
Run the following command to install the custom resource definitions (CRDs) in the cluster configured in your ~/.kube/config
file and run the Operator locally:
$ make install run
...
{"level":"info","ts":1612589622.7888272,"logger":"ansible-controller","msg":"Watching resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memcached"}
{"level":"info","ts":1612589622.7897573,"logger":"proxy","msg":"Starting to serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612589622.789971,"logger":"controller-runtime.manager","msg":"starting metrics server","path":"/metrics"}
{"level":"info","ts":1612589622.7899997,"logger":"controller-runtime.manager.controller.memcached-controller","msg":"Starting EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612589622.8904517,"logger":"controller-runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612589622.8905244,"logger":"controller-runtime.manager.controller.memcached-controller","msg":"Starting workers","worker count":8}
Before running your Ansible-based Operator on OpenShift Container Platform, update your project to use supported images.
Update the project root-level Dockerfile to use supported images. Change the default builder image reference from:
FROM quay.io/operator-framework/ansible-operator:v1.3.0
to:
FROM registry.redhat.io/openshift4/ose-ansible-operator:v4.7
Use the builder image version that matches your Operator SDK version. Failure to do so can result in problems due to project layout, or scaffolding, differences, particularly when mixing newer upstream versions of the Operator SDK with downstream OpenShift Container Platform builder images. |
In the config/default/manager_auth_proxy_patch.yaml
file, change the image
value from:
gcr.io/kubebuilder/kube-rbac-proxy:<tag>
to use the supported image:
registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.7
You can run your Operator project as a deployment on your cluster.
Run the following make
commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can obtain an account for storing containers at repository sites such as Quay.io.
Build the image:
$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>
The Dockerfile generated by the SDK for the Operator explicitly references |
Push the image to a repository:
$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>
The name and tag of the image, for example |
Run the following command to deploy the Operator:
$ make deploy IMG=<registry>/<user>/<image_name>:<tag>
By default, this command creates a namespace with the name of your Operator project in the form <project_name>-system
and is used for the deployment. This command also installs the RBAC manifests from config/rbac
.
Verify that the Operator is running:
$ oc get deployment -n <project_name>-system
NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m
Operator Lifecycle Manager (OLM) helps you to install, update, and generally manage the lifecycle of Operators and their associated services on a Kubernetes cluster. OLM is installed by default on OpenShift Container Platform and runs as a Kubernetes extension so that you can use the web console and the OpenShift CLI (oc
) for all Operator lifecycle management functions without any additional tools.
The Operator Bundle Format is the default packaging method for Operator SDK and OLM. You can get your Operator ready for OLM by using the Operator SDK to build, push, validate, and run a bundle image with OLM.
Operator SDK CLI installed on a development workstation
OpenShift CLI (oc
) v4.7+ installed
Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.16.0 or later if you use apiextensions.k8s.io/v1
CRDs, for example OpenShift Container Platform 4.7)
Logged into the cluster with oc
using an account with cluster-admin
permissions
Operator project initialized by using the Operator SDK
Run the following make
commands in your Operator project directory to build and push your Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can obtain an account for storing containers at repository sites such as Quay.io.
Build the image:
$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>
The Dockerfile generated by the SDK for the Operator explicitly references |
Push the image to a repository:
$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>
Create your Operator bundle manifest by running the make bundle
command, which invokes several commands, including the Operator SDK generate bundle
and bundle validate
subcommands:
$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>
Bundle manifests for an Operator describe how to display, create, and manage an application. The make bundle
command creates the following files and directories in your Operator project:
A bundle manifests directory named bundle/manifests
that contains a ClusterServiceVersion
object
A bundle metadata directory named bundle/metadata
All custom resource definitions (CRDs) in a config/crd
directory
A Dockerfile bundle.Dockerfile
These files are then automatically validated by using operator-sdk bundle validate
to ensure the on-disk bundle representation is correct.
Build and push your bundle image by running the following commands. OLM consumes Operator bundles using an index image, which reference one or more bundle images.
Build the bundle image. Set BUNDLE_IMAGE
with the details for the registry, user namespace, and image tag where you intend to push the image:
$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>
Push the bundle image:
$ docker push <registry>/<user>/<bundle_image_name>:<tag>
Check the status of OLM on your cluster by using the following Operator SDK command:
$ operator-sdk olm status \
--olm-namespace=openshift-operator-lifecycle-manager
Run the Operator on your cluster by using the OLM integration in Operator SDK:
$ operator-sdk run bundle \
[-n <namespace>] \(1)
<registry>/<user>/<bundle_image_name>:<tag>
1 | By default, the command installs the Operator in the currently active project in your ~/.kube/config file. You can add the -n flag to set a different namespace scope for the installation. |
This command performs the following actions:
Create an index image with your bundle image injected.
Create a catalog source that points to your new index image, which enables OperatorHub to discover your Operator.
Deploy your Operator to your cluster by creating an Operator group, subscription, install plan, and all other required objects, including RBAC.
After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided on the cluster by the Operator.
Example Memcached Operator, which provides the Memcached
CR, installed on a cluster
Change to the namespace where your Operator is installed. For example, if you deployed the Operator using the make deploy
command:
$ oc project memcached-operator-system
Edit the sample Memcached
CR manifest at config/samples/cache_v1_memcached.yaml
to contain the following specification:
apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
...
spec:
...
size: 3
Create the CR:
$ oc apply -f config/samples/cache_v1_memcached.yaml
Ensure that the Memcached
Operator creates the deployment for the sample CR with the correct size:
$ oc get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 1m
Check the pods and CR status to confirm the status is updated with the Memcached pod names.
Check the pods:
$ oc get pods
NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m
Check the CR status:
$ oc get memcached/memcached-sample -o yaml
apiVersion: cache.example.com/v1
kind: Memcached
metadata:
...
name: memcached-sample
...
spec:
size: 3
status:
nodes:
- memcached-sample-6fd7c98d8-7dqdr
- memcached-sample-6fd7c98d8-g5k7v
- memcached-sample-6fd7c98d8-m7vn7
Update the deployment size.
Update config/samples/cache_v1_memcached.yaml
file to change the spec.size
field in the Memcached
CR from 3
to 5
:
$ oc patch memcached memcached-sample \
-p '{"spec":{"size": 5}}' \
--type=merge
Confirm that the Operator changes the deployment size:
$ oc get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 5/5 5 5 3m
Clean up the resources that have been created as part of this tutorial.
If you used the make deploy
command to test the Operator, run the following command:
$ make undeploy
If you used the operator-sdk run bundle
command to test the Operator, run the following command:
$ operator-sdk cleanup <project_name>
See Project layout for Ansible-based Operators to learn about the directory structures created by the Operator SDK.