This is a cache of https://docs.openshift.com/container-platform/4.10/installing/installing_rhv/installing-rhv-customizations.html. It is a snapshot of the page at 2024-11-25T16:06:31.999+0000.
Installing a cluster on RHV with customizations - Installing on RHV | Installing | OpenShift Container Platform 4.10
×

You can customize and install an OpenShift Container Platform cluster on Red Hat Virtualization (RHV), similar to the one shown in the following diagram.

Diagram of an OpenShift Container Platform cluster on a RHV cluster

The installation program uses installer-provisioned infrastructure to automate creating and deploying the cluster.

To install a customized cluster, you prepare the environment and perform the following steps:

  1. Create an installation configuration file, the install-config.yaml file, by running the installation program and answering its prompts.

  2. Inspect and modify parameters in the install-config.yaml file.

  3. Make a working copy of the install-config.yaml file.

  4. Run the installation program with a copy of the install-config.yaml file.

Then, the installation program creates the OpenShift Container Platform cluster.

For an alternative to installing a customized cluster, see Installing a default cluster.

This installation program is available for Linux and macOS only.

Prerequisites

Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.10, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.

  • Access Quay.io to obtain the packages that are required to install your cluster.

  • Obtain the packages that are required to perform cluster updates.

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

Requirements for the RHV environment

To install and run an OpenShift Container Platform version 4.10 cluster, the RHV environment must meet the following requirements.

Not meeting these requirements can cause the installation or process to fail. Additionally, not meeting these requirements can cause the OpenShift Container Platform cluster to fail days or weeks after installation.

The following requirements for CPU, memory, and storage resources are based on default values multiplied by the default number of virtual machines the installation program creates. These resources must be available in addition to what the RHV environment uses for non-OpenShift Container Platform operations.

By default, the installation program creates seven virtual machines during the installation process. First, it creates a bootstrap virtual machine to provide temporary services and a control plane while it creates the rest of the OpenShift Container Platform cluster. When the installation program finishes creating the cluster, deleting the bootstrap machine frees up its resources.

If you increase the number of virtual machines in the RHV environment, you must increase the resources accordingly.

Requirements
  • The RHV version is 4.4.

  • The RHV environment has one data center whose state is Up.

  • The RHV data center contains an RHV cluster.

  • The RHV cluster has the following resources exclusively for the OpenShift Container Platform cluster:

    • Minimum 28 vCPUs: four for each of the seven virtual machines created during installation.

    • 112 GiB RAM or more, including:

      • 16 GiB or more for the bootstrap machine, which provides the temporary control plane.

      • 16 GiB or more for each of the three control plane machines which provide the control plane.

      • 16 GiB or more for each of the three compute machines, which run the application workloads.

  • The RHV storage domain must meet these etcd backend performance requirements.

  • For affinity group support:

    One physical machine per worker or control plane. Workers and control planes can be on the same physical machine. For example, if you have three workers and three control planes, you need three physical machines. If you have four workers and three control planes, you need four physical machines.

    • For hard anti-affinity (default): A minimum of three physical machines. For more than three worker nodes, one physical machine per worker or control plane. Workers and control planes can be on the same physical machine.

    • For custom affinity groups: Ensure that the resources are appropriate for the affinity group rules that you define.

  • In production environments, each virtual machine must have 120 GiB or more. Therefore, the storage domain must provide 840 GiB or more for the default OpenShift Container Platform cluster. In resource-constrained or non-production environments, each virtual machine must have 32 GiB or more, so the storage domain must have 230 GiB or more for the default OpenShift Container Platform cluster.

  • To download images from the Red Hat Ecosystem Catalog during installation and update procedures, the RHV cluster must have access to an internet connection. The Telemetry service also needs an internet connection to simplify the subscription and entitlement process.

  • The RHV cluster must have a virtual network with access to the REST API on the RHV Manager. Ensure that DHCP is enabled on this network, because the VMs that the installer creates obtain their IP address by using DHCP.

  • A user account and group with the following least privileges for installing and managing an OpenShift Container Platform cluster on the target RHV cluster:

    • DiskOperator

    • DiskCreator

    • UserTemplateBasedVm

    • TemplateOwner

    • TemplateCreator

    • ClusterAdmin on the target cluster

Apply the principle of least privilege: Avoid using an administrator account with SuperUser privileges on RHV during the installation process. The installation program saves the credentials you provide to a temporary ovirt-config.yaml file that might be compromised.

Verifying the requirements for the RHV environment

Verify that the RHV environment meets the requirements to install and run an OpenShift Container Platform cluster. Not meeting these requirements can cause failures.

These requirements are based on the default resources the installation program uses to create control plane and compute machines. These resources include vCPUs, memory, and storage. If you change these resources or increase the number of OpenShift Container Platform machines, adjust these requirements accordingly.

Procedure
  1. Check that the RHV version supports installation of OpenShift Container Platform version 4.10.

    1. In the RHV Administration Portal, click the ? help icon in the upper-right corner and select About.

    2. In the window that opens, make a note of the RHV Software Version.

    3. Confirm that the RHV version is 4.4. For more information about supported version combinations, see Support Matrix for OpenShift Container Platform on RHV.

  2. Inspect the data center, cluster, and storage.

    1. In the RHV Administration Portal, click ComputeData Centers.

    2. Confirm that the data center where you plan to install OpenShift Container Platform is accessible.

    3. Click the name of that data center.

    4. In the data center details, on the Storage tab, confirm the storage domain where you plan to install OpenShift Container Platform is Active.

    5. Record the Domain Name for use later on.

    6. Confirm Free Space has at least 230 GiB.

    7. Confirm that the storage domain meets these etcd backend performance requirements, which you can measure by using the fio performance benchmarking tool.

    8. In the data center details, click the Clusters tab.

    9. Find the RHV cluster where you plan to install OpenShift Container Platform. Record the cluster name for use later on.

  3. Inspect the RHV host resources.

    1. In the RHV Administration Portal, click Compute > Clusters.

    2. Click the cluster where you plan to install OpenShift Container Platform.

    3. In the cluster details, click the Hosts tab.

    4. Inspect the hosts and confirm they have a combined total of at least 28 Logical CPU Cores available exclusively for the OpenShift Container Platform cluster.

    5. Record the number of available Logical CPU Cores for use later on.

    6. Confirm that these CPU cores are distributed so that each of the seven virtual machines created during installation can have four cores.

    7. Confirm that, all together, the hosts have 112 GiB of Max free Memory for scheduling new virtual machines distributed to meet the requirements for each of the following OpenShift Container Platform machines:

      • 16 GiB required for the bootstrap machine

      • 16 GiB required for each of the three control plane machines

      • 16 GiB for each of the three compute machines

    8. Record the amount of Max free Memory for scheduling new virtual machines for use later on.

  4. Verify that the virtual network for installing OpenShift Container Platform has access to the RHV Manager’s REST API. From a virtual machine on this network, use curl to reach the RHV Manager’s REST API:

    $ curl -k -u <username>@<profile>:<password> \ (1)
    https://<engine-fqdn>/ovirt-engine/api (2)
    1 For <username>, specify the user name of an RHV account with privileges to create and manage an OpenShift Container Platform cluster on RHV. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. For <password>, specify the password for that user name.
    2 For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.

    For example:

    $ curl -k -u ocpadmin@internal:pw123 \
    https://rhv-env.virtlab.example.com/ovirt-engine/api

Preparing the network environment on RHV

Configure two static IP addresses for the OpenShift Container Platform cluster and create DNS entries using these addresses.

Procedure
  1. Reserve two static IP addresses

    1. On the network where you plan to install OpenShift Container Platform, identify two static IP addresses that are outside the DHCP lease pool.

    2. Connect to a host on this network and verify that each of the IP addresses is not in use. For example, use Address Resolution Protocol (ARP) to check that none of the IP addresses have entries:

      $ arp 10.35.1.19
      Example output
      10.35.1.19 (10.35.1.19) -- no entry
    3. Reserve two static IP addresses following the standard practices for your network environment.

    4. Record these IP addresses for future reference.

  2. Create DNS entries for the OpenShift Container Platform REST API and apps domain names using this format:

    api.<cluster-name>.<base-domain>   <ip-address> (1)
    *.apps.<cluster-name>.<base-domain>   <ip-address> (2)
    1 For <cluster-name>, <base-domain>, and <ip-address>, specify the cluster name, base domain, and static IP address of your OpenShift Container Platform API.
    2 Specify the cluster name, base domain, and static IP address of your OpenShift Container Platform apps for Ingress and the load balancer.

    For example:

    api.my-cluster.virtlab.example.com	10.35.1.19
    *.apps.my-cluster.virtlab.example.com	10.35.1.20

Installing OpenShift Container Platform on RHV in insecure mode

By default, the installer creates a CA certificate, prompts you for confirmation, and stores the certificate to use during installation. You do not need to create or install one manually.

Although it is not recommended, you can override this functionality and install OpenShift Container Platform without verifying a certificate by installing OpenShift Container Platform on RHV in insecure mode.

Installing in insecure mode is not recommended, because it enables a potential attacker to perform a Man-in-the-Middle attack and capture sensitive credentials on the network.

Procedure
  1. Create a file named ~/.ovirt/ovirt-config.yaml.

  2. Add the following content to ovirt-config.yaml:

    ovirt_url: https://ovirt.example.com/ovirt-engine/api (1)
    ovirt_fqdn: ovirt.example.com (2)
    ovirt_pem_url: ""
    ovirt_username: ocpadmin@internal
    ovirt_password: super-secret-password (3)
    ovirt_insecure: true
    1 Specify the hostname or address of your oVirt engine.
    2 Specify the fully qualified domain name of your oVirt engine.
    3 Specify the admin password for your oVirt engine.
  3. Run the installer.

Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on a local computer.

Prerequisites
  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure
  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.

  2. Select your infrastructure provider.

  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Red Hat Virtualization (RHV).

Prerequisites
  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

  • Obtain service principal permissions at the subscription level.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

    2. Respond to the installation program prompts.

      1. For SSH Public Key, select a password-less public key, such as ~/.ssh/id_rsa.pub. This key authenticates connections with the new OpenShift Container Platform cluster.

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, select an SSH key that your ssh-agent process uses.

      2. For Platform, select ovirt.

      3. For Enter oVirt’s API endpoint URL, enter the URL of the RHV API using this format:

        https://<engine-fqdn>/ovirt-engine/api (1)
        1 For <engine-fqdn>, specify the fully qualified domain name of the RHV environment.

        For example:

        $ curl -k -u ocpadmin@internal:pw123 \
        https://rhv-env.virtlab.example.com/ovirt-engine/api
      4. For Is the oVirt CA trusted locally?, enter Yes, because you have already set up a CA certificate. Otherwise, enter No.

      5. For oVirt’s CA bundle, if you entered Yes for the preceding question, copy the certificate content from /etc/pki/ca-trust/source/anchors/ca.pem and paste it here. Then, press Enter twice. Otherwise, if you entered No for the preceding question, this question does not appear.

      6. For oVirt engine username, enter the user name and profile of the RHV administrator using this format:

        <username>@<profile> (1)
        1 For <username>, specify the user name of an RHV administrator. For <profile>, specify the login profile, which you can get by going to the RHV Administration Portal login page and reviewing the Profile dropdown list. Together, the user name and profile should look similar to this example:
        ocpadmin@internal
      7. For oVirt engine password, enter the RHV admin password.

      8. For oVirt cluster, select the cluster for installing OpenShift Container Platform.

      9. For oVirt storage domain, select the storage domain for installing OpenShift Container Platform.

      10. For oVirt network, select a virtual network that has access to the RHV Manager REST API.

      11. For Internal API Virtual IP, enter the static IP address you set aside for the cluster’s REST API.

      12. For Ingress virtual IP, enter the static IP address you reserved for the wildcard apps domain.

      13. For Base Domain, enter the base domain of the OpenShift Container Platform cluster. If this cluster is exposed to the outside world, this must be a valid domain recognized by DNS infrastructure. For example, enter: virtlab.example.com

      14. For Cluster Name, enter the name of the cluster. For example, my-cluster. Use cluster name from the externally registered/resolvable DNS entries you created for the OpenShift Container Platform REST API and apps domain names. The installation program also gives this name to the cluster in the RHV environment.

      15. For Pull Secret, copy the pull secret from the pull-secret.txt file you downloaded earlier and paste it here. You can also get a copy of the same pull secret from the Red Hat OpenShift Cluster Manager.

  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    If you have any intermediate CA certificates on the Manager, verify that the certificates appear in the ovirt-config.yaml file and the install-config.yaml file. If they do not appear, add them as follows:

    1. In the ~/.ovirt/ovirt-config.yaml file:

      [ovirt_ca_bundle]: |
           -----BEGIN certificate-----
           <MY_TRUSTED_CA>
           -----END certificate-----
           -----BEGIN certificate-----
           <INTERMEDIATE_CA>
           -----END certificate-----
    2. In the install-config.yaml file:

      [additionalTrustBundle]: |
           -----BEGIN certificate-----
           <MY_TRUSTED_CA>
           -----END certificate-----
           -----BEGIN certificate-----
           <INTERMEDIATE_CA>
           -----END certificate-----
  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Example install-config.yaml files for Red Hat Virtualization (RHV)

You can customize the OpenShift Container Platform cluster the installation program creates by changing the parameters and parameter values in the install-config.yaml file.

The following examples are specific to installing OpenShift Container Platform on RHV.

install-config.yaml is located in <installation_directory>, which you specified when you ran the following command.

$ ./openshift-install create install-config --dir <installation_directory>
  • These example files are provided for reference only. You must obtain your install-config.yaml file by using the installation program.

  • Changing the install-config.yaml file can increase the resources your cluster requires. Verify that your RHV environment has those additional resources. Otherwise, the installation or cluster will fail.

Example default install-config.yaml file

apiVersion: v1
baseDomain: example.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform: {}
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform: {}
  replicas: 3
metadata:
  creationTimestamp: null
  name: my-cluster
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OpenShiftSDN
  serviceNetwork:
  - 172.30.0.0/16
platform:
  ovirt:
    api_vip: 10.46.8.230
    ingress_vip: 192.168.1.5
    ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
    ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
    ovirt_network_name: ovirtmgmt
    vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
publish: External
pullSecret: '{"auths": ...}'
sshKey: ssh-ed12345 AAAA...

Example minimal install-config.yaml file

apiVersion: v1
baseDomain: example.com
metadata:
  name: test-cluster
platform:
  ovirt:
    api_vip: 10.46.8.230
    ingress_vip: 10.46.8.232
    ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
    ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
    ovirt_network_name: ovirtmgmt
    vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
pullSecret: '{"auths": ...}'
sshKey: ssh-ed12345 AAAA...

Example Custom machine pools in an install-config.yaml file

apiVersion: v1
baseDomain: example.com
controlPlane:
  name: master
  platform:
    ovirt:
      cpu:
        cores: 4
        sockets: 2
      memoryMB: 65536
      osDisk:
        sizeGB: 100
      vmType: server
  replicas: 3
compute:
- name: worker
  platform:
    ovirt:
      cpu:
        cores: 4
        sockets: 4
      memoryMB: 65536
      osDisk:
        sizeGB: 200
      vmType: server
  replicas: 5
metadata:
  name: test-cluster
platform:
  ovirt:
    api_vip: 10.46.8.230
    ingress_vip: 10.46.8.232
    ovirt_cluster_id: 68833f9f-e89c-4891-b768-e2ba0815b76b
    ovirt_storage_domain_id: ed7b0f4e-0e96-492a-8fff-279213ee1468
    ovirt_network_name: ovirtmgmt
    vnicProfileID: 3fa86930-0be5-4052-b667-b79f0a729692
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

Example non-enforcing affinity group

It is recommended to add a non-enforcing affinity group to distribute the control plane and workers, if possible, to use as much of the cluster as possible.

platform:
  ovirt:
    affinityGroups:
    - description: AffinityGroup to place each compute machine on a separate host
      enforcing: true
      name: compute
      priority: 3
    - description: AffinityGroup to place each control plane machine on a separate host
      enforcing: true
      name: controlplane
      priority: 5
    - description: AffinityGroup to place worker nodes and control plane nodes on separate hosts
      enforcing: false
      name: openshift
      priority: 5
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    ovirt:
      affinityGroupsNames:
      - compute
      - openshift
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    ovirt:
      affinityGroupsNames:
      - controlplane
      - openshift
  replicas: 3

Example removing all affinity groups for a non-production lab setup

For non-production lab setups, you must remove all affinity groups to concentrate the OpenShift Container Platform cluster on the few hosts you have.

platform:
  ovirt:
    affinityGroups: []
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    ovirt:
      affinityGroupsNames: []
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    ovirt:
      affinityGroupsNames: []
  replicas: 3

Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 1. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 2. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI provider for all-Linux networks. OVNKubernetes is a CNI provider for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OpenShiftSDN.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 3. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OpenShift Container Platform process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects. For details, see the "Additional RHV parameters for machine pools" table.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects. For details, see the "Additional RHV parameters for machine pools" table.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

fips

Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

If you are using Azure File storage, you cannot enable FIPS mode.

false or true

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms and IBM Cloud VPC.

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key or keys to authenticate access your cluster machines.

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

One or more keys. For example:

sshKey:
  <key1>
  <key2>
  <key3>

Additional Red Hat Virtualization (RHV) configuration parameters

Additional RHV configuration parameters are described in the following table:

Table 4. Additional Red Hat Virtualization (RHV) parameters for clusters
Parameter Description Values

platform.ovirt.ovirt_cluster_id

Required. The Cluster where the VMs will be created.

String. For example: 68833f9f-e89c-4891-b768-e2ba0815b76b

platform.ovirt.ovirt_storage_domain_id

Required. The Storage Domain ID where the VM disks will be created.

String. For example: ed7b0f4e-0e96-492a-8fff-279213ee1468

platform.ovirt.ovirt_network_name

Required. The network name where the VM nics will be created.

String. For example: ocpcluster

platform.ovirt.vnicProfileID

Required. The vNIC profile ID of the VM network interfaces. This can be inferred if the cluster network has a single profile.

String. For example: 3fa86930-0be5-4052-b667-b79f0a729692

platform.ovirt.api_vip

Required. An IP address on the machine network that will be assigned to the API virtual IP (VIP). You can access the OpenShift API at this endpoint.

String. Example: 10.46.8.230

platform.ovirt.ingress_vip

Required. An IP address on the machine network that will be assigned to the Ingress virtual IP (VIP).

String. Example: 10.46.8.232

platform.ovirt.affinityGroups

Optional. A list of affinity groups to create during the installation process.

List of objects.

platform.ovirt.affinityGroups.description

Required if you include platform.ovirt.affinityGroups. A description of the affinity group.

String. Example: AffinityGroup for spreading each compute machine to a different host

platform.ovirt.affinityGroups.enforcing

Required if you include platform.ovirt.affinityGroups. When set to true, RHV does not provision any machines if not enough hardware nodes are available. When set to false, RHV does provision machines even if not enough hardware nodes are available, resulting in multiple virtual machines being hosted on the same physical machine.

String. Example: true

platform.ovirt.affinityGroups.name

Required if you include platform.ovirt.affinityGroups. The name of the affinity group.

String. Example: compute

platform.ovirt.affinityGroups.priority

Required if you include platform.ovirt.affinityGroups. The priority given to an affinity group when platform.ovirt.affinityGroups.enforcing = false. RHV applies affinity groups in the order of priority, where a greater number takes precedence over a lesser one. If multiple affinity groups have the same priority, the order in which they are applied is not guaranteed.

Integer. Example: 3

Additional RHV parameters for machine pools

Additional RHV configuration parameters for machine pools are described in the following table:

Table 5. Additional RHV parameters for machine pools
Parameter Description Values

<machine-pool>.platform.ovirt.cpu

Optional. Defines the CPU of the VM.

Object

<machine-pool>.platform.ovirt.cpu.cores

Required if you use <machine-pool>.platform.ovirt.cpu. The number of cores. Total virtual CPUs (vCPUs) is cores * sockets.

Integer

<machine-pool>.platform.ovirt.cpu.sockets

Required if you use <machine-pool>.platform.ovirt.cpu. The number of sockets per core. Total virtual CPUs (vCPUs) is cores * sockets.

Integer

<machine-pool>.platform.ovirt.memoryMB

Optional. Memory of the VM in MiB.

Integer

<machine-pool>.platform.ovirt.instanceTypeID

Optional. An instance type UUID, such as 00000009-0009-0009-0009-0000000000f1, which you can get from the https://<engine-fqdn>/ovirt-engine/api/instancetypes endpoint.

The instance_type_id field is deprecated and will be removed in a future release.

String of UUID

<machine-pool>.platform.ovirt.osDisk

Optional. Defines the first and bootable disk of the VM.

String

<machine-pool>.platform.ovirt.osDisk.sizeGB

Required if you use <machine-pool>.platform.ovirt.osDisk. Size of the disk in GiB.

Number

<machine-pool>.platform.ovirt.vmType

Optional. The VM workload type, such as high-performance, server, or desktop. By default, control plane nodes use high-performance, and worker nodes use server. For details, see Explanation of Settings in the New Virtual Machine and Edit Virtual Machine Windows and Configuring High Performance Virtual Machines, Templates, and Pools in the Virtual Machine Management Guide.

high_performance improves performance on the VM, but there are limitations. For example, you cannot access the VM with a graphical console. For more information, see Configuring High Performance Virtual Machines, Templates, and Pools in the Virtual Machine Management Guide.

String

<machine-pool>.platform.ovirt.affinityGroupsNames

Optional. A list of affinity group names that should be applied to the virtual machines. The affinity groups must exist in RHV, or be created during installation as described in Additional RHV parameters for clusters in this topic. This entry can be empty.

Example with two affinity groups

This example defines two affinity groups, named compute and clusterWideNonEnforcing:

<machine-pool>:
  platform:
    ovirt:
      affinityGroupNames:
        - compute
        - clusterWideNonEnforcing

This example defines no affinity groups:

<machine-pool>:
  platform:
    ovirt:
      affinityGroupNames: []

String

<machine-pool>.platform.ovirt.AutoPinningPolicy

Optional. AutoPinningPolicy defines the policy to automatically set the CPU and NUMA settings, including pinning to the host for the instance. When the field is omitted, the default is none. Supported values: none, resize_and_pin. For more information, see Setting NUMA Nodes in the Virtual Machine Management Guide.

String

<machine-pool>.platform.ovirt.hugepages

Optional. Hugepages is the size in KiB for defining hugepages in a VM. Supported values: 2048 or 1048576. For more information, see Configuring Huge Pages in the Virtual Machine Management Guide.

Integer

You can replace <machine-pool> with controlPlane or compute.

Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • Open the ovirt-imageio port to the Manager from the machine running the installer. By default, the port is 54322.

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure
  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

    When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.

    Example output
    ...
    INFO Install complete!
    INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
    INFO Time elapsed: 36m22s

    The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.

    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

    You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

You have completed the steps required to install the cluster. The remaining steps show you how to verify the cluster and troubleshoot the installation.

Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.10. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version in the Version drop-down menu.

  3. Click Download Now next to the OpenShift v4.10 Linux Client entry and save the file.

  4. Unpack the archive:

    $ tar xvf <file>
  5. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version in the Version drop-down menu.

  3. Click Download Now next to the OpenShift v4.10 Windows Client entry and save the file.

  4. Unzip the archive with a ZIP program.

  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

After you install the OpenShift CLI, it is available using the oc command:

C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure
  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.

  2. Select the appropriate version in the Version drop-down menu.

  3. Click Download Now next to the OpenShift v4.10 MacOSX Client entry and save the file.

  4. Unpack and unzip the archive.

  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites
  • You deployed an OpenShift Container Platform cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Verifying cluster status

You can verify your OpenShift Container Platform cluster’s status during or after installation.

Procedure
  1. In the cluster environment, export the administrator’s kubeconfig file:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.

    The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.

  2. View the control plane and compute machines created after a deployment:

    $ oc get nodes
  3. View your cluster’s version:

    $ oc get clusterversion
  4. View your Operators' status:

    $ oc get clusteroperator
  5. View all running pods in the cluster:

    $ oc get pods -A
Troubleshooting

If the installation fails, the installation program times out and displays an error message. To learn more, see Troubleshooting installation issues.

Accessing the OpenShift Container Platform web console on RHV

After the OpenShift Container Platform cluster initializes, you can log in to the OpenShift Container Platform web console.

Procedure
  1. Optional: In the Red Hat Virtualization (RHV) Administration Portal, open ComputeCluster.

  2. Verify that the installation program creates the virtual machines.

  3. Return to the command line where the installation program is running. When the installation program finishes, it displays the user name and temporary password for logging into the OpenShift Container Platform web console.

  4. In a browser, open the URL of the OpenShift Container Platform web console. The URL uses this format:

    console-openshift-console.apps.<clustername>.<basedomain> (1)
    1 For <clustername>.<basedomain>, specify the cluster name and base domain.

    For example:

    console-openshift-console.apps.my-cluster.virtlab.example.com

Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.10, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

Troubleshooting common issues with installing on Red Hat Virtualization (RHV)

Here are some common issues you might encounter, along with proposed causes and solutions.

CPU load increases and nodes go into a Not Ready state

  • Symptom: CPU load increases significantly and nodes start going into a Not Ready state.

  • Cause: The storage domain latency might be too high, especially for control plane nodes.

  • Solution:

    Make the nodes ready again by restarting the kubelet service:

    $ systemctl restart kubelet

    Inspect the OpenShift Container Platform metrics service, which automatically gathers and reports on some valuable data such as the etcd disk sync duration. If the cluster is operational, use this data to help determine whether storage latency or throughput is the root issue. If so, consider using a storage resource that has lower latency and higher throughput.

    To get raw metrics, enter the following command as kubeadmin or user with cluster-admin privileges:

    $ oc get --insecure-skip-tls-verify --server=https://localhost:<port> --raw=/metrics

Trouble connecting the OpenShift Container Platform cluster API

  • Symptom: The installation program completes but the OpenShift Container Platform cluster API is not available. The bootstrap virtual machine remains up after the bootstrap process is complete. When you enter the following command, the response will time out.

    $ oc login -u kubeadmin -p *** <apiurl>
  • Cause: The bootstrap VM was not deleted by the installation program and has not released the cluster’s API IP address.

  • Solution: Use the wait-for subcommand to be notified when the bootstrap process is complete:

    $ ./openshift-install wait-for bootstrap-complete

    When the bootstrap process is complete, delete the bootstrap virtual machine:

    $ ./openshift-install destroy bootstrap

Post-installation tasks

After the OpenShift Container Platform cluster initializes, you can perform the following tasks.

  • Optional: After deployment, add or replace SSH keys using the Machine Config Operator (MCO) in OpenShift Container Platform.

  • Optional: Remove the kubeadmin user. Instead, use the authentication provider to create a user with cluster-admin privileges.

Next steps