This is a cache of https://docs.okd.io/4.11/installing/installing_vmc/installing-vmc-network-customizations.html. It is a snapshot of the page at 2024-11-21T20:06:29.785+0000.
Installing a cluster on VMC with network customizations - Installing on VMC | Installing | OKD 4.11
×

In OKD version 4.11, you can install a cluster on your VMware vSphere instance using installer-provisioned infrastructure with customized network configuration options by deploying it to VMware Cloud (VMC) on AWS.

Once you configure your VMC environment for OKD deployment, you use the OKD installation program from the bastion management host, co-located in the VMC environment. The installation program and control plane automates the process of deploying and managing the resources needed for the OKD cluster.

By customizing your OKD network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing VXLAN configurations. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster. You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.

OKD supports deploying a cluster to a single VMware vCenter only. Deploying a cluster with machines/machine sets on multiple vCenters is not supported.

Setting up VMC for vSphere

You can install OKD on VMware Cloud (VMC) on AWS hosted vSphere clusters to enable applications to be deployed and managed both on-premise and off-premise, across the hybrid cloud.

VMC on AWS Architecture

You must configure several options in your VMC environment prior to installing OKD on VMware vSphere. Ensure your VMC environment has the following prerequisites:

  • Create a non-exclusive, DHCP-enabled, NSX-T network segment and subnet. Other virtual machines (VMs) can be hosted on the subnet, but at least eight IP addresses must be available for the OKD deployment.

  • Allocate two IP addresses, outside the DHCP range, and configure them with reverse DNS records.

    • A DNS record for api.<cluster_name>.<base_domain> pointing to the allocated IP address.

    • A DNS record for *.apps.<cluster_name>.<base_domain> pointing to the allocated IP address.

  • Configure the following firewall rules:

    • An ANY:ANY firewall rule between the OKD compute network and the internet. This is used by nodes and applications to download container images.

    • An ANY:ANY firewall rule between the installation host and the software-defined data center (SDDC) management network on port 443. This allows you to upload the Fedora CoreOS (FCOS) OVA during deployment.

    • An HTTPS firewall rule between the OKD compute network and vCenter. This connection allows OKD to communicate with vCenter for provisioning and managing nodes, persistent volume claims (PVCs), and other resources.

  • You must have the following information to deploy OKD:

    • The OKD cluster name, such as vmc-prod-1.

    • The base DNS name, such as companyname.com.

    • If not using the default, the pod network CIDR and services network CIDR must be identified, which are set by default to 10.128.0.0/14 and 172.30.0.0/16, respectively. These CIDRs are used for pod-to-pod and pod-to-service communication and are not accessible externally; however, they must not overlap with existing subnets in your organization.

    • The following vCenter information:

      • vCenter hostname, username, and password

      • Datacenter name, such as SDDC-Datacenter

      • Cluster name, such as Cluster-1

      • Network name

      • Datastore name, such as WorkloadDatastore

        It is recommended to move your vSphere cluster to the VMC Compute-ResourcePool resource pool after your cluster installation is finished.

  • A Linux-based host deployed to VMC as a bastion.

    • The bastion host can be Fedora or any another Linux-based host; it must have internet connectivity and the ability to upload an OVA to the ESXi hosts.

    • Download and install the OpenShift CLI tools to the bastion host.

      • The openshift-install installation program

      • The OpenShift CLI (oc) tool

You cannot use the VMware NSX Container Plugin for Kubernetes (NCP), and NSX is not used as the OpenShift SDN. The version of NSX currently available with VMC is incompatible with the version of NCP certified with OKD.

However, the NSX DHCP service is used for virtual machine IP management with the full-stack automated OKD deployment and with nodes provisioned, either manually or automatically, by the Machine API integration with vSphere. Additionally, NSX firewall rules are created to enable access with the OKD cluster and between the bastion host and the VMC vSphere hosts.

VMC Sizer tool

VMware Cloud on AWS is built on top of AWS bare metal infrastructure; this is the same bare metal infrastructure which runs AWS native services. When a VMware cloud on AWS software-defined data center (SDDC) is deployed, you consume these physical server nodes and run the VMware ESXi hypervisor in a single tenant fashion. This means the physical infrastructure is not accessible to anyone else using VMC. It is important to consider how many physical hosts you will need to host your virtual infrastructure.

To determine this, VMware provides the VMC on AWS Sizer. With this tool, you can define the resources you intend to host on VMC:

  • Types of workloads

  • Total number of virtual machines

  • Specification information such as:

    • Storage requirements

    • vCPUs

    • vRAM

    • Overcommit ratios

With these details, the sizer tool can generate a report, based on VMware best practices, and recommend your cluster configuration and the number of hosts you will need.

vSphere prerequisites

VMware vSphere infrastructure requirements

You must install the OKD cluster on a VMware vSphere version 7 instance that meets the requirements for the components that you use.

OKD version 4.11 does not support VMware vSphere version 8.0.

You can host the VMware vSphere infrastructure on-premise or on a VMware Cloud Verified provider that meets the requirements outlined in the following table:

Table 1. Version requirements for vSphere virtual environments
Virtual environment product Required version

VM hardware version

15 or later

vSphere ESXi hosts

7

vCenter host

7

Installing a cluster on VMware vSphere version 7.0 Update 1 or earlier is now deprecated. These versions are still fully supported, but version 4.11 of OKD requires vSphere virtual hardware version 15 or later. Hardware version 15 is now the default for vSphere virtual machines in OKD. To update the hardware version for your vSphere nodes, see the "Updating hardware on nodes running in vSphere" article.

If your vSphere nodes are below hardware version 15 or your VMware vSphere version is earlier than 6.7.3, upgrading from OKD 4.10 to OKD 4.11 is not available.

Table 2. Minimum supported vSphere version for VMware components
Component Minimum supported versions Description

Hypervisor

vSphere 7 with HW version 15

This version is the minimum version that Fedora CoreOS (FCOS) supports. For more information about supported hardware on the latest version of Fedora that is compatible with FCOS, see Hardware on the Red Hat Customer Portal.

Storage with in-tree drivers

vSphere 7

This plugin creates vSphere storage by using the in-tree storage drivers for vSphere included in OKD.

You must ensure that the time on your ESXi hosts is synchronized before you install OKD. See Edit Time Configuration for a Host in the VMware documentation.

Network connectivity requirements

You must configure the network connectivity between machines to allow OKD cluster components to communicate.

Review the following details about the required network ports.

Table 3. Ports used for all-machine to all-machine communications
Protocol Port Description

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

10256

openshift-sdn

UDP

4789

virtual extensible LAN (VXLAN)

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 4. Ports used for all-machine to control plane communications
Protocol Port Description

TCP

6443

Kubernetes API

Table 5. Ports used for control plane machine to control plane machine communications
Protocol Port Description

TCP

2379-2380

etcd server and peer ports

VMware vSphere CSI Driver Operator requirements

To install the vSphere CSI Driver Operator, the following requirements must be met:

  • VMware vSphere version 7.0 Update 1 or later

  • Virtual machines of hardware version 15 or later

  • No third-party vSphere CSI driver already installed in the cluster

If a third-party vSphere CSI driver is present in the cluster, OKD does not overwrite it. If you continue with the third-party vSphere CSI driver when upgrading to the next major version of OKD, the oc CLI prompts you with the following message:

VSphereCSIDriverOperatorCRUpgradeable: VMwareVSphereControllerUpgradeable:
found existing unsupported csi.vsphere.vmware.com driver

The previous message informs you that Red Hat does not support the third-party vSphere CSI driver during an OKD upgrade operation. You can choose to ignore this message and continue with the upgrade operation.

Additional resources

vCenter requirements

Before you install an OKD cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.

Required vCenter account privileges

To install an OKD cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.

If you cannot use an account with global administrative privileges, you must create roles to grant the privileges necessary for OKD cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OKD cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.

An additional role is required if the installation program is to create a vSphere virtual machine folder.

Roles and privileges required for installation in vSphere API
vSphere object for role When required Required privileges in vSphere API

vSphere vCenter

Always

Cns.Searchable
InventoryService.Tagging.AttachTag
InventoryService.Tagging.CreateCategory
InventoryService.Tagging.CreateTag
InventoryService.Tagging.DeleteCategory
InventoryService.Tagging.DeleteTag
InventoryService.Tagging.EditCategory
InventoryService.Tagging.EditTag
Sessions.ValidateSession
StorageProfile.Update
StorageProfile.View

vSphere vCenter Cluster

If VMs will be created in the cluster root

Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk

vSphere vCenter Resource Pool

If an existing resource pool is provided

Host.Config.Storage
Resource.AssignVMToPool
VApp.AssignResourcePool
VApp.Import
VirtualMachine.Config.AddNewDisk

vSphere Datastore

Always

Datastore.AllocateSpace
Datastore.Browse
Datastore.FileManagement
InventoryService.Tagging.ObjectAttachable

vSphere Port Group

Always

Network.Assign

Virtual Machine Folder

Always

InventoryService.Tagging.ObjectAttachable
Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
VirtualMachine.Provisioning.MarkAsTemplate
VirtualMachine.Provisioning.DeployTemplate

vSphere vCenter Datacenter

If the installation program creates the virtual machine folder

InventoryService.Tagging.ObjectAttachable
Resource.AssignVMToPool
VApp.Import
VirtualMachine.Config.AddExistingDisk
VirtualMachine.Config.AddNewDisk
VirtualMachine.Config.AddRemoveDevice
VirtualMachine.Config.AdvancedConfig
VirtualMachine.Config.Annotation
VirtualMachine.Config.CPUCount
VirtualMachine.Config.DiskExtend
VirtualMachine.Config.DiskLease
VirtualMachine.Config.EditDevice
VirtualMachine.Config.Memory
VirtualMachine.Config.RemoveDisk
VirtualMachine.Config.Rename
VirtualMachine.Config.ResetGuestInfo
VirtualMachine.Config.Resource
VirtualMachine.Config.Settings
VirtualMachine.Config.UpgradeVirtualHardware
VirtualMachine.Interact.GuestControl
VirtualMachine.Interact.PowerOff
VirtualMachine.Interact.PowerOn
VirtualMachine.Interact.Reset
VirtualMachine.Inventory.Create
VirtualMachine.Inventory.CreateFromExisting
VirtualMachine.Inventory.Delete
VirtualMachine.Provisioning.Clone
VirtualMachine.Provisioning.DeployTemplate
VirtualMachine.Provisioning.MarkAsTemplate
Folder.Create
Folder.Delete

Roles and privileges required for installation in vCenter graphical user interface (GUI)
vSphere object for role When required Required privileges in vCenter GUI

vSphere vCenter

Always

Cns.Searchable
"vSphere Tagging"."Assign or Unassign vSphere Tag"
"vSphere Tagging"."Create vSphere Tag Category"
"vSphere Tagging"."Create vSphere Tag"
vSphere Tagging"."Delete vSphere Tag Category"
"vSphere Tagging"."Delete vSphere Tag"
"vSphere Tagging"."Edit vSphere Tag Category"
"vSphere Tagging"."Edit vSphere Tag"
Sessions."Validate session"
"Profile-driven storage"."Profile-driven storage update"
"Profile-driven storage"."Profile-driven storage view"

vSphere vCenter Cluster

If VMs will be created in the cluster root

Host.Configuration."Storage partition configuration"
Resource."Assign virtual machine to resource pool"
VApp."Assign resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add new disk"

vSphere vCenter Resource Pool

If an existing resource pool is provided

Host.Configuration."Storage partition configuration"
Resource."Assign virtual machine to resource pool"
VApp."Assign resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add new disk"

vSphere Datastore

Always

Datastore."Allocate space"
Datastore."Browse datastore"
Datastore."Low level file operations"
"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"

vSphere Port Group

Always

Network."Assign network"

Virtual Machine Folder

Always

"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"
Resource."Assign virtual machine to resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add existing disk"
"Virtual machine"."Change Configuration"."Add new disk"
"Virtual machine"."Change Configuration"."Add or remove device"
"Virtual machine"."Change Configuration"."Advanced configuration"
"Virtual machine"."Change Configuration"."Set annotation"
"Virtual machine"."Change Configuration"."Change CPU count"
"Virtual machine"."Change Configuration"."Extend virtual disk"
"Virtual machine"."Change Configuration"."Acquire disk lease"
"Virtual machine"."Change Configuration"."Modify device settings"
"Virtual machine"."Change Configuration"."Change Memory"
"Virtual machine"."Change Configuration"."Remove disk"
"Virtual machine"."Change Configuration".Rename
"Virtual machine"."Change Configuration"."Reset guest information"
"Virtual machine"."Change Configuration"."Change resource"
"Virtual machine"."Change Configuration"."Change Settings"
"Virtual machine"."Change Configuration"."Upgrade virtual machine compatibility"
"Virtual machine".Interaction."Guest operating system management by VIX API"
"Virtual machine".Interaction."Power off"
"Virtual machine".Interaction."Power on"
"Virtual machine".Interaction.Reset
"Virtual machine"."Edit Inventory"."Create new"
"Virtual machine"."Edit Inventory"."Create from existing"
"Virtual machine"."Edit Inventory"."Remove"
"Virtual machine".Provisioning."Clone virtual machine"
"Virtual machine".Provisioning."Mark as template"
"Virtual machine".Provisioning."Deploy template"

vSphere vCenter Datacenter

If the installation program creates the virtual machine folder

"vSphere Tagging"."Assign or Unassign vSphere Tag on Object"
Resource."Assign virtual machine to resource pool"
VApp.Import
"Virtual machine"."Change Configuration"."Add existing disk"
"Virtual machine"."Change Configuration"."Add new disk"
"Virtual machine"."Change Configuration"."Add or remove device"
"Virtual machine"."Change Configuration"."Advanced configuration"
"Virtual machine"."Change Configuration"."Set annotation"
"Virtual machine"."Change Configuration"."Change CPU count"
"Virtual machine"."Change Configuration"."Extend virtual disk"
"Virtual machine"."Change Configuration"."Acquire disk lease"
"Virtual machine"."Change Configuration"."Modify device settings"
"Virtual machine"."Change Configuration"."Change Memory"
"Virtual machine"."Change Configuration"."Remove disk"
"Virtual machine"."Change Configuration".Rename
"Virtual machine"."Change Configuration"."Reset guest information"
"Virtual machine"."Change Configuration"."Change resource"
"Virtual machine"."Change Configuration"."Change Settings"
"Virtual machine"."Change Configuration"."Upgrade virtual machine compatibility"
"Virtual machine".Interaction."Guest operating system management by VIX API"
"Virtual machine".Interaction."Power off"
"Virtual machine".Interaction."Power on"
"Virtual machine".Interaction.Reset
"Virtual machine"."Edit Inventory"."Create new"
"Virtual machine"."Edit Inventory"."Create from existing"
"Virtual machine"."Edit Inventory"."Remove"
"Virtual machine".Provisioning."Clone virtual machine"
"Virtual machine".Provisioning."Deploy template"
"Virtual machine".Provisioning."Mark as template"
Folder."Create folder"
Folder."Delete folder"

Additionally, the user requires some ReadOnly permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.

Required permissions and propagation settings
vSphere object When required Propagate to children Permissions required

vSphere vCenter

Always

False

Listed required privileges

vSphere vCenter Datacenter

Existing folder

False

ReadOnly permission

Installation program creates the folder

True

Listed required privileges

vSphere vCenter Cluster

Existing resource pool

False

ReadOnly permission

VMs in cluster root

True

Listed required privileges

vSphere vCenter Datastore

Always

False

Listed required privileges

vSphere Switch

Always

False

ReadOnly permission

vSphere Port Group

Always

False

Listed required privileges

vSphere vCenter Virtual Machine Folder

Existing folder

True

Listed required privileges

vSphere vCenter Resource Pool

Existing resource pool

True

Listed required privileges

For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.

Using OKD with vMotion

If you intend on using vMotion in your vSphere environment, consider the following before installing a OKD cluster.

  • OKD generally supports compute-only vMotion, where generally implies that you meet all VMware best practices for vMotion.

    To help ensure the uptime of your compute and control plane nodes, ensure that you follow the VMware best practices for vMotion, and use VMware anti-affinity rules to improve the availability of OKD during maintenance or hardware issues.

    For more information about vMotion and anti-affinity rules, see the VMware vSphere documentation for vMotion networking requirements and VM anti-affinity rules.

  • Using Storage vMotion can cause issues and is not supported. If you are using vSphere volumes in your pods, migrating a VM across datastores, either manually or through Storage vMotion, causes invalid references within OKD persistent volume (PV) objects that can result in data loss.

  • OKD does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.

Cluster resources

When you deploy an OKD cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.

A standard OKD installation creates the following vCenter resources:

  • 1 Folder

  • 1 Tag category

  • 1 Tag

  • Virtual machines:

    • 1 template

    • 1 temporary bootstrap node

    • 3 control plane nodes

    • 3 compute machines

Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.

If you deploy more compute machines, the OKD cluster will use more storage.

Cluster limits

Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.

Networking requirements

You must use the Dynamic Host Configuration Protocol (DHCP) for the network and ensure that the DHCP server is configured to provide persistent IP addresses to the cluster machines. In the DHCP lease, you must configure the DHCP to use the default gateway. All nodes must be in the same VLAN. You cannot scale the cluster using a second VLAN as a Day 2 operation. Additionally, you must create the following networking resources before you install the OKD cluster:

It is recommended that each OKD node in the cluster must have access to a Network Time Protocol (ntp) server that is discoverable via DHCP. Installation is possible without an ntp server. However, asynchronous server clocks will cause errors, which ntp server prevents.

Required IP Addresses

An installer-provisioned vSphere installation requires two static IP addresses:

  • The API address is used to access the cluster API.

  • The Ingress address is used for cluster ingress traffic.

You must provide these IP addresses to the installation program when you install the OKD cluster.

DNS records

You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OKD cluster. In each record, <cluster_name> is the cluster name and <base_domain> is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>..

Table 6. Required DNS records
Component Record Description

API VIP

api.<cluster_name>.<base_domain>.

This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

Ingress VIP

*.apps.<cluster_name>.<base_domain>.

A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster.

Generating a key pair for cluster node SSH access

During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the /home/core/.ssh/authorized_keys.d/core file. However, the Machine Config Operator manages SSH keys in the /home/core/.ssh/authorized_keys file and configures sshd to ignore the /home/core/.ssh/authorized_keys.d/core file. As a result, newly provisioned OKD nodes are not accessible using SSH until the Machine Config Operator reconciles the machine configs with the authorized_keys file. After you can access the nodes using SSH, you can delete the /home/core/.ssh/authorized_keys.d/core file.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

    If you plan to install an OKD cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OKD, provide the SSH public key to the installation program.

Obtaining the installation program

Before you install OKD, download the installation file on a local computer.

Prerequisites
  • You have a machine that runs Linux, for example Red Hat Enterprise Linux 8, with 500 MB of local disk space.

    If you attempt to run the installation program on macOS, a known issue related to the golang compiler causes the installation of the OKD cluster to fail. For more information about this issue, see the section named "Known Issues" in the OKD 4.11 release notes document.

Procedure
  1. Download installer from https://github.com/openshift/okd/releases

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.

  2. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  3. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.

    Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}} as the pull secret when prompted during the installation.

    • Red Hat Operators are not available.

    • The Telemetry and Insights operators do not send data to Red Hat.

    • Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.

Adding vCenter root CA certificates to your system trust

Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OKD cluster.

Procedure
  1. From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The <vCenter>/certs/download.zip file downloads.

  2. Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:

    certs
    ├── lin
    │   ├── 108f4d17.0
    │   ├── 108f4d17.r1
    │   ├── 7e757f6a.0
    │   ├── 8e4f8471.0
    │   └── 8e4f8471.r0
    ├── mac
    │   ├── 108f4d17.0
    │   ├── 108f4d17.r1
    │   ├── 7e757f6a.0
    │   ├── 8e4f8471.0
    │   └── 8e4f8471.r0
    └── win
        ├── 108f4d17.0.crt
        ├── 108f4d17.r1.crl
        ├── 7e757f6a.0.crt
        ├── 8e4f8471.0.crt
        └── 8e4f8471.r0.crl
    
    3 directories, 15 files
  3. Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:

    # cp certs/lin/* /etc/pki/ca-trust/source/anchors
  4. Update your system trust. For example, on a Fedora operating system, run the following command:

    # update-ca-trust extract

Creating the installation configuration file

You can customize the OKD cluster you install on VMware vSphere.

Prerequisites
  • Obtain the OKD installation program and the pull secret for your cluster.

  • Obtain service principal permissions at the subscription level.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.

      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select vsphere as the platform to target.

      3. Specify the name of your vCenter instance.

      4. Specify the user name and password for the vCenter account that has the required permissions to create the cluster.

        The installation program connects to your vCenter instance.

      5. Select the datacenter in your vCenter instance to connect to.

      6. Select the default vCenter datastore to use.

      7. Select the vCenter cluster to install the OKD cluster in. The installation program uses the root resource pool of the vSphere cluster as the default resource pool.

      8. Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.

      9. Enter the virtual IP address that you configured for control plane API access.

      10. Enter the virtual IP address that you configured for cluster ingress.

      11. Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.

      12. Enter a descriptive name for your cluster. The cluster name you enter must match the cluster name you specified when configuring the DNS records.

      13. Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.

  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Installation configuration parameters

Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 7. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters and hyphens (-), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, nutanix, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster.

Table 8. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) cluster network provider to install.

Either OpenShiftSDN or OVNKubernetes. The default value is OVNKubernetes.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 9. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

capabilities

Controls the installation of optional core cluster components. You can reduce the footprint of your OKD cluster by disabling optional components.

String array

capabilities.baselineCapabilitySet

Selects an initial set of optional capabilities to enable. Valid values are None, v4.11 and vCurrent. v4.11 enables the baremetal Operator, the marketplace Operator, and the openshift-samples content. vCurrent installs the recommended set of capabilities for the current version of OKD. The default value is vCurrent.

String

capabilities.additionalEnabledCapabilities

Extends the set of optional capabilities beyond what you specify in baselineCapabilitySet. Valid values are baremetal, marketplace and openshift-samples. You may specify multiple capabilities in this parameter.

String array

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OKD process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OKD cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String